• Title/Summary/Keyword: BP neural Network

Search Result 218, Processing Time 0.025 seconds

A Neural Net System Self-organizing the Distributed Concepts for Speech Recognition (음성인식을 위한 분산개념을 자율조직하는 신경회로망시스템)

  • Kim, Sung-Suk;Lee, Tai-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.85-91
    • /
    • 1989
  • In this paper, we propose a neural net system for speech recognition, which is composed of two neural networks. Firstly the self-supervised BP(Back Propagation) network generates the distributed concept corresponding to the activity pattern in the hidden units. And then the self-organizing neural network forms a concept map which directly displays the similarity relations between concepts. By doing the above, the difficulty in learning the conventional BP network is solved and the weak side of BP falling into a pattern matcher is gone, while the strong point of generating the various internal representations is used. And we have obtained the concept map which is more orderly than the Kohonen's SOFM. The proposed neural net system needs not any special preprocessing and has a self-learning ability.

  • PDF

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

Prediction of Nonlinear Sequences by Self-Organized CMAC Neural Network (자율조직 CMAC 신경망에 의한 비선형 시계열 예측)

  • 이태호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.62-66
    • /
    • 2002
  • An attempt of using SOCMAC neural network for the prediction of a nonlinear sequence, which is generated by Mackey-Glass equation, is reported. The ,report shows the SOCMAC can handle a system with multi-dimensional continuous inputs, which has been considered very difficult, if not impossible, task to be implemented by a CMAC neural network because of a huge amount of memory required. Also, an improved training method based on the variable receptive fields is proposed. The Performance ranged somewhere around those of TDNN and BP neural networks.

  • PDF

A Neural Network Aided Kalman Filtering Approach for SINS/RDSS Integrated Navigation

  • Xiao-Feng, He;Xiao-Ping, Hu;Liang-Qing, Lu;Kang-Hua, Tang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.491-494
    • /
    • 2006
  • Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.

  • PDF

Pattern Recognition Using BP Learning Algorithm of Multiple Valued Logic Neural Network (다치 신경 망의 BP 학습 알고리즘을 이용한 패턴 인식)

  • 김두완;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.502-505
    • /
    • 2002
  • 본 논문은 다치(MVL:Multiple Valued Logic) 신경망의 BP(Backpropagation) 학습 알고리즘을 이용하여 패턴 인식에 이용하는 방법을 제안한다. MVL 신경망을 이용하여 패턴 인식에 이용함으로서, 네트워크에 필요한 시간 및 기억 공간을 최소화할 수 있고 환경 변화에 적응할 수 있는 가능성을 제시하였다. MVL 신경망은 다치 논리 함수를 기반으로 신경망을 구성하였으며, 입력은 리터럴 함수로 변환시키고, 출력은 MIN과 MAX 연산을 사용하여 구하였고, 학습을 하기 위해 다치 논리식의 편 미분을 사용하였다.

Proposal of Optimized Neural Network-Based Wireless Sensor Node Location Algorithm (최적화된 신경망 기반 무선 센서 노드위치 알고리즘 제안)

  • Guan, Bo;Qu, Hongxiang;Yang, Fengjian;Li, Hongliang;Yang-Kwon, Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1129-1136
    • /
    • 2022
  • This study leads to the shortcoming that the RSSI distance measurement method is easily affected by the external environment and the position error is large, leading to the problem of optimizing the distance values measured by the RSSI distance measurement nodes in this three-dimensional configuration environment. We proposed the CA-PSO-BP algorithm, which is an improved version of the CA-PSO algorithm. The proposed algorithm allows setting unknown nodes in WSN 3D space. In addition, since CA-PSO was applied to the BP neural network, it was possible to shorten the learning time of the BP network and improve the convergence speed of the algorithm through learning. Through the algorithm proposed in this study, it was proved that the precision of the network location can be increased significantly (15%), and significant results were obtained.

A Study on Face Recognition using a Hybrid GA-BP Algorithm (혼합된 GA-BP 알고리즘을 이용한 얼굴 인식 연구)

  • Jeon, Ho-Sang;Namgung, Jae-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.552-557
    • /
    • 2000
  • In the paper, we proposed a face recognition method that uses GA-BP(Genetic Algorithm-Back propagation Network) that optimizes initial parameters such as bias values or weights. Each pixel in the picture is used for input of the neuralnetwork. The initial weights of neural network is consist of fixed-point real values and converted to bit string on purpose of using the individuals that arte expressed in the Genetic Algorithm. For the fitness value, we defined the value that shows the lowest error of neural network, which is evaluated using newly defined adaptive re-learning operator and built the optimized and most advanced neural network. Then we made experiments on the face recognition. In comparison with learning convergence speed, the proposed algorithm shows faster convergence speed than solo executed back propagation algorithm and provides better performance, about 2.9% in proposed method than solo executed back propagation algorithm.

  • PDF

A Study on the Position Control of DC servo Motor Usign a Fuzzy Neural Network (퍼지신경망을 이용한 직류서보 모터의 위치 제어에 관한 연구)

  • 설재훈;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.51-59
    • /
    • 1997
  • In this paper, we perform the position control of a DC servo motor using fuzzy neural controller. We use the Fuzzy controller for the position control, because the Fuzzy controller is designed simpler than other intelligent controller, but it is difficult to design for the triangle membership function format. Therefore we solve the problem using the BP learning method of neural network. The proposed Fuzzy neural network controller has been applied to the position control of various virtual plants. And the DC servo motor position control using the fuzzy neural network controller is performed as a real time experiment.

  • PDF

Forecasting of Runoff Hydrograph Using Neural Network Algorithms (신경망 알고리즘을 적용한 유출수문곡선의 예측)

  • An, Sang-Jin;Jeon, Gye-Won;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.505-515
    • /
    • 2000
  • THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.

  • PDF

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.