• Title/Summary/Keyword: BMP-Test

Search Result 89, Processing Time 0.024 seconds

Healing Effect of Danggwisu-san (Dangguixu-san) on Femur Fractured Mice (당귀수산(當歸鬚散)이 대퇴골절 유발 생쥐에 미치는 영향)

  • Jeon, Dong-Hwi;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Objectives This study was designed to evaluate the effects of Danggwisu-san (Dangguixu-san, DG) on bone repair from femur fracture in mice. Methods Mice were randomly divided into 4 groups (normal, control, positive control and DG 300 mg/kg-treated group). In order to investigate the effects of DG on gene expressions in experimental animals with fracture, we measured the levels of bone morphogenetic protein-2 (BMP2), cyclooxygenase-2 (COX2), Sox9, collagen type II alpha 1 chain (Col2a1), runt-related transcription factor 2 (Runx2), osterix genes. After the cytotoxicity test, we analyzed the levels of expression of osteocalcin and Runx2, and tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine. The process of fusion in the fracture was also investigated by gross examination. Results Through in vivo BMP2, COX2 gene expression significantly decreased. Sox9 significantly increased. Col2a1, Runx2, osterix gene expression also increased as well, but there was no statistical significance. The degree of unilateral fracture fusion investigated by gross examination was significantly faster than those of the other groups. Through in vitro the level of TNF-α in macrophages was increased by DG in a dose-dependent mannerand and 250 and 500 ㎍/mL showed statistical significance. Osteocalcin and Runx2 genes expressions increased when DG was treated in osteoblasts. Conclusions DG promotes the healing of the fracture through the expression of bone repair-related genes and TNF-α production. This study may set the foundation for the clinical application of DG to the patients with bone fractures.

Cell-laden Gelatin Fiber Contained Calcium Phosphate Biomaterials as a Stem Cell Delivery Vehicle for Bone Repair (세포 함유 젤라틴 파이버 응용을 통한 골 재생 유도용 인산칼슘 생체재료 세포 탑재 연구)

  • Kim, Seon-Hwa;Hwang, Changmo;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Natural and synthetic forms of calcium phosphate cement (CPC) have been widely used in bone repair and augmentation. The major challenge of injectable CPC is to deliver the cells without cell death in order to regenerate new bone. The study objective was to investigate for the potential of stem cell-laden gelatin fibers containing injectable, nanocrystalline CPC to function as a delivery system. Gelatin noddle fiber method was developed to delivered cells into nCPC. Experimental groups were prepared by mixing cells with nCPC, mixing cell-laden gelatin fibers with nCPC and mixing cell-laden gelatin fibers containing BMP-2 with nCPC. Media diffusion test was conducted after dissolving the gelatin fibers. SEM examined the generated channels and delivered cell morphology. Fibers mixed with nCPC showed physical setting and hardening within 20 min after injection and showed good shape maintenances. The gelatin fibers mixed nCPC group had several vacant channels generated from the dissolved gelatin. Particularly, proliferation and attachment of the cells were observed inside of the channels. While live cells were not observed in the cell mixed nCPC group, cells delivered with the gelatin fibers into the nCPC showed good viability and increased DNA content with culture. Cell-laden gelatin fiber was a novel method for cell delivery into nCPC without cell damages. Results also indicated the osteogenic differentiation of gelatin fiber delivered cells. We suggest that the cell-laden gelatin fibers mixed with nCPC can be used as an injectable cell delivery vehicle and the addition of BMP-2 to enhances osteogenesis.

Analysis on Statins for The Treatment of Bone Fracture (스타틴계 고지혈증치료제의 골절치료효과에 대한 분석)

  • Choi, Byung-Chul
    • YAKHAK HOEJI
    • /
    • v.53 no.4
    • /
    • pp.206-216
    • /
    • 2009
  • 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (Statins) are potent inhibitors of cholesterol biosynthesis. Cholesterol-lowering therapy using statins significantly reduces the risk of coronary heart disease. Various discovery of statins as bone anabolic agents has spurred a great deal of interest among both basic and clinical bone researchers. In-vitro and some animal studies suggest that statins increase the bone mass by enhancing bone morphogenetic protein-2 (BMP-2)-mediated osteoblast expression. Clinical and animal test results of statins focusing on the prevention and treatment of bone fractures was collected. Three independent literature searches were performed by using from January 1, 2002 to September 2008 for clinical and animal test results. Search term included statins, HMG-CoA reductase inhibitors, pleiotropic effects, fracture, osteoporosis and clinical and animal test. No consensus has been reached whether clinical use of statins has beneficial effects on bone health, partly due to lower statin concentrations because of first-pass metabolism by the liver. Experimental use of statins as stimulators of bone formation suggests that they may have widespread applicability in the field of orthopaedics. With their combined effects on osteoblasts and osteoclasts, statins have the potential to enhance resorption of synthetic materials and improve bone ingrowth. In conclusion, The use of statins in the prevention and treatment of bone fractures requires further study. But observational studies suggest that statins for decreasing bone fractures including osteoporosis have to be considered local direct administration like transdermal or subcutaneous type over oral adminstration.

High-rate Anaerobic Co-digestion of Food Waste and Sewage Sludge (음식물쓰레기와 하수슬러지의 고율 혐기성 통합소화)

  • Heo, Nam-Hyo;Chung, Sang-Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.60-72
    • /
    • 2005
  • The effect of alkaline pre-treatment on the solubilization of waste activated sludge(WAS) was investigated, and the biodegradability of WAS, pretreated WAS, [PWAS], food waste and two types of mixture were estimated by biochemical methane potential [BMP] test at $35^{\circ}C$. The biodegradability of PWAS and mixture waste were significantly improved due to the effect of alkaline hydrolysis of WAS. An alkaline pre-treatment was identified to be one of the useful pre-treatment for improving biodegradability of WAS and mixture waste. In high-rate anaerobic co-digestion system coordinate with an alkaline pre-treatment in process, the digesters were operated at the HRT of 5, 7, 10 and 13 days with a mixture of FW $50\%\;and\;PWAS\;50\%,\;$In term of $CH_4$ content, VS removal and specific methane production [SMP] which are the parameters in the performance of digester, the optimum operating condition was found to be a HRT of 7 days and a OLR of 4.20g/L-day with the highest SMP of 0.340 L $CH_4/g$ VS.

  • PDF

Optimization of Methane Yield in Anaerobic Digestion of Sewage Sludge with Microwave Pretreatment (극초단파 전처리를 적용한 하수슬러지 혐기성소화에서 메탄수율 최적화)

  • Park, WoonJi;Lee, GwanJae;Lee, DongJun;Lee, SeoRo;Choi, YuJin;Hong, JiYeong;Yang, DongSeok;Lim, KyoungJae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.17-29
    • /
    • 2020
  • The objective of this study was to find an optimum methane yield condition in anaerobic digestion of sewage sludge with microwave pretreatment. The pretreatment process was carried out using a lab scale industrial microwave unit (2,450 MHz frequency). The digestion efficiency of pretreated sludge was evaluated by biochemical methane potential (BMP) test. Box-Behnken design and Response Surface Analysis (RSA) were applied to determine the optimal combination of sludge mixing ratio (0 to 100%), power (400 to 1600 W), holding time (0 to 10 min) and pretreatment temperature (60 to 100℃). BMP test results showed that Volatile Solid (VS) removal efficiency was up to 48% at a condition of 0% for mixing ratio, 1600 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. Methane production was up to 832.3 mL/g VSremoved at a condition of 50% for mixing ratio, 1000 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. The results of the variance analysis (ANOVA) showed that the p-value of the power and pretreatment temperature among the independent variables were significant (p<0.05), and in particular, the pretreatment temperature significantly affected on the solubilization and methane production. The optimum condition for the maximum methane yield (847 mL/g VSremoved) was consist of 38.4% of mixing ratio, 909.1 W of power, 4.1 min of holding time, and 80℃ of temperature within the design boundaries.

Biogas potential estimation for mono- and co-digestion of cow manure and waste grass (우분뇨와 폐잔디의 단독 및 병합소화 잠재량 평가)

  • Ahn, Johng-Hwa;Gillespie, Andrew;Shin, Seung Gu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • Biogas production potential was experimentally estimated for mono- and co-digestion of cow manure and waste grass. The two organic wastes were mixed at five different ratios (100:0, 75:25, 50:50, 25:75, 0:100) on the volatile solids basis, and were assessed using biochemical methane potential (BMP) test. Thee reaction temperatures, 25℃, 30℃ and 35℃, were applied as well, resulting in 15 different combinations for the test. The results showed that both higher temperature and waste grass mixing ratio resulted in higher methane yield and maximum methane production rate. Based on the experimental results, a theoretical farm- or community-scale (240 or 2400 ㎥) anaerobic digester was designed to evaluate the energy balance associated with mono- and co-digestion of the wastes at different temperatures. Although the energy production increased as the temperature and the waste grass mixing ratio increased, the net energy gain, energy production subtracted by energy consumption for heating and maintenance, was estimated to be the highest at 30℃, followed by at 35℃ and 25℃. Therefore, it is advised that both the experimental methane production and the detailed design parameters must be considered for the optimization of the net energy gain from these wastes.

Variation in Physicochemical Properties and Anaerobic Digestion Efficiency by Thermal-alkali Pre-treatment (THAP) Factors (열화학적 가수분해 영향인자에 따른 물리화학적 특성 변화 및 혐기성소화 효율 평가)

  • Park, Seyong;Han, Sungkuk;Song, Eunhey;Kim, Choonggon;Lee, Wonbae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.27-39
    • /
    • 2019
  • In this study, thermal-alkali pre-treatment (THAP) optimal condition and co-digestion efficiency with THAP of the mixture food waste and sewage sludge were evaluated for improving the performances of co-digestion for mixed food waste and sewage sludge. The optimal condition of THAP was evaluated for solubilization COD, CST(Capillary Suction Time), TTF(Time to Filter), and volatile fatty acids (VFAs) with THAP temperature and NaOH concentration. In addition, the co-digestion of mixed food waste and sewage sludge were evaluated using biochemical methane potential (BMP) test. The optimal THAP reaction temperature and NaOH concentration of food waste and sewage sludge were $140^{\circ}C$ and 60 meq/L to solubilization COD over 20%, CST and TTF under 60sec and VFAs concentration over 12,000 mg-COD/L, respectively. The optimal condition of co-digestion of mixed food waste and sewage sludge equal to THAP condition. Therefore, it was determined that the optimal condition of THAP reaction temperature and NaOH concentration for co-digestion of mixed food waste and sewage sludge were $140^{\circ}C$ and 60 meq/L, respectively.

A Study on Personalized Emotion Recognition in Forest Healing Space - Focus on Subjective Qualitative Analysis and Bio-signal Measurement - (산림 치유 공간에서의 개인 감정 인지 효과에 관한 연구)

  • Lee, Yang-Woo;Seo, Yong-Mo;Lee, Jung-Nyun;Whang, Min-Cheol
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.2
    • /
    • pp.57-65
    • /
    • 2019
  • This study is a scientific approach to psychological factors such as emotional stability among various effects of forest resources. In order to carry out this study, the experiment was conducted on the subjects by setting the forest healing space as various spaces. The subjects who participated in this experiment were the students in their twenties and the average age was 22±1.25 years. The subjects were assessed for emotional words through subjective sequence evaluation in different designated forest healing spot. In addition, the emotional states that they actually perceived were measured by measuring the bio-signals to their perceived emotions. BMP, SDNN, VLF, LF, HF, Amplitude, and PPI were used for the bio-signal reaction experiment applied to this study. The results of this experiment were measured by Friedman test and Wilcoxon test for statistical analysis. n this study, 'good', 'clear', and 'uncomfortable' words were found statistically significant at the spot of forest healing space for subjective emotional vocabulary. In addition, SDNN, HF and Amplitude were statistically significant in the results of quantitative bio-signal measurement at each spot in the forest healing space. Based on the results of this study, we can suggest the application direction and strategic utilization plan of forest healing spot and forest resource utilization field. This is not only a guide for the users who use the facility through the spatial facilities and physical requirements for the emotion based forest-healing, but also can be used as a personalized emotional space design aspect.

The Effect of the IGF-I treated Gingival and Periodontal Ligament Fibroblast on Osteoblasts (IGF-I으로 처리한 치은 및 치주인대 섬유모세포가 골모세포에 미치는 영향)

  • Kim, Mi-Jeong;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.589-600
    • /
    • 2001
  • Insulin-like growth factor I (IGF-I) has the local tissue regulating actions. In bone, IGF-I increases the replication of osteoblastic lineage, probably preosteoblasts, and enhances osteoblastic collagen synthesis and matrix composition rates. The purpose of this study was to investigate the local regulatory effect of IGF-I on periodontium totally, both in an autocrine and paracrine manner. To examine the effect of IGF-I directly on osteoblast (OB) of test rats, and indirectlv on OB via periodontal ligament fibroblast (PDLF), and the effect of gingival fibroblast (GF) on OB via cellular paracrine manner for the understanding of humoral action of adjacent tissue, GF and PDLF were obtained from male Sprague-Dawley rats of six to eight weeks of age. OB was obtained iron frontal and parietal calvarial bone of Sprague-Dawley 21day-old-fetus. After each tell was Incubated 24 hours, for collecting conditioned medium, different concentrations of IGF-I (1,10,100 ng/ml,1ml/well) was adding in the GF, PDLF cells, and the supernatant from these cultures was put into the primary OB culture with $1{\times}10^4$cell/ml/well. The experimental group was divided into six groups control OB, IGF-I treated OB, OB culture with conditioned medium from PDLF, OB culture with conditioned medium from IGF-I treated PDLF, OB culture with conditioned medium from GF, OB culture with conditioned medium from IGF-I treated GF. After final IGF-I treatment, OB was Incubated for 24 hours, and alkaline phosphatase activity assay, BMP expression, cell proliferation measurement using MTT assay, total protein measurement, Collagen synthesis assay using western blot, and examination of bone nodule synthesis were done. Alkaline phosphatase expressions were increased in the group of PDLF-IGF-I supernatant treatment. Direct IGF-I treatment with concentrations of 100ng/m1 showed increased viable tell number measured by MTT assay. And IGF-I treatment did not increase total protein amount. The entire experimental group showed BMP2, 4 expression in western blot, and there was no significant difference between control and experimental groups. These results suggested that supernatant from PDLF effects on increasing cellular activities of OB regardless of IGF-I, and at high concentration, IGF-I increases OB tell proliferation.

  • PDF

Recovery of Sustainable Renewable Energy from Marine Biomass

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.156-161
    • /
    • 2012
  • Marine biomass is considered an important substrate for anaerobic digestion to recovery energy i.e. methane. Nevertheless, marine biomass has attracted little attention by researchers compared to terrestrial feedstock for anaerobic digestion. In this study, biochemical methane potential (BMP) test was used to evaluate generation of renewable energy from starfish. A cumulative biogas yield of $748{\pm}67mL\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The cumulative methane yield of $486{\pm}28mL\;CH_4\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The methane content of the biogas was approximately 70%. The calculated data applying the modified Gompertz equation for the cumulative $CH_4$ production showed good correlation with the experimental result obtained from this batch study. Since the result obtained from this study is comparable to results with other substrates, marine biomass can be co-digested with food waste or swine wastewater to produce $CH_4$ gas that will help to reduce the gap in global energy demand.