DOI QR코드

DOI QR Code

Recovery of Sustainable Renewable Energy from Marine Biomass

  • Gurung, Anup (Department of Biological Environment, Kangwon National University) ;
  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University)
  • Received : 2012.01.25
  • Accepted : 2012.03.30
  • Published : 2012.04.30

Abstract

Marine biomass is considered an important substrate for anaerobic digestion to recovery energy i.e. methane. Nevertheless, marine biomass has attracted little attention by researchers compared to terrestrial feedstock for anaerobic digestion. In this study, biochemical methane potential (BMP) test was used to evaluate generation of renewable energy from starfish. A cumulative biogas yield of $748{\pm}67mL\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The cumulative methane yield of $486{\pm}28mL\;CH_4\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The methane content of the biogas was approximately 70%. The calculated data applying the modified Gompertz equation for the cumulative $CH_4$ production showed good correlation with the experimental result obtained from this batch study. Since the result obtained from this study is comparable to results with other substrates, marine biomass can be co-digested with food waste or swine wastewater to produce $CH_4$ gas that will help to reduce the gap in global energy demand.

Keywords

References

  1. Agdag, O.N. and D.T. Sponza. 2005. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes. Chemosphere. 59:871-879. https://doi.org/10.1016/j.chemosphere.2004.11.017
  2. Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J.L. Campos, A.J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J.B. Van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 59:927-934. https://doi.org/10.2166/wst.2009.040
  3. APHA. 1998. Standard methods for the examination of water and wastewater.American Public Health Association: USA.
  4. Bauen, A. 2006. Future energy sources and systems-Acting on climate change and energy security. J. Power Sources. 157:893-901. https://doi.org/10.1016/j.jpowsour.2006.03.034
  5. Behera, S.K., J.M. Park, K.H. Kim, and H.S. Park. 2010. Methane production from food waste leachate in laboratory-scale simulated landfill. Waste Manage. 30:1502-1508. https://doi.org/10.1016/j.wasman.2010.02.028
  6. Bird, K.T., D.P. Chynoweth, and D.E. Jerger. 1990. Effects of marine algal proximate composition on methane yields. J. Appl. Phycol. 2:207-213. https://doi.org/10.1007/BF02179777
  7. Chandra, R., V.K. Vijay, P.M.V. Subbarao, and T.K. Khura. 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Appl. Energy. 93:148-159. https://doi.org/10.1016/j.apenergy.2010.10.049
  8. Cho, J.K., S.C. Park. and H.N. Chang. 1995. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour. Technol. 52:245-253. https://doi.org/10.1016/0960-8524(95)00031-9
  9. Chynoweth, D.P., J.M. Owens, and R. Legrand. 2000. Renewable methane from anaerobic digestion of biomass. Renew. Energy. 22:1-8.
  10. Ehimen, E.A., Z.F. Sun, C.G. Carrington, E.J. Birch, and J.J. Eaton-Rye. 2011. Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl. Energy. 88:3454-3463. https://doi.org/10.1016/j.apenergy.2010.10.020
  11. Gompertz, B. 1825. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. Philos. T. Roy. Soc. Lon. 115:513-583. https://doi.org/10.1098/rstl.1825.0026
  12. Gunaseelan, V.N. 2004. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy. 26:389-399. https://doi.org/10.1016/j.biombioe.2003.08.006
  13. Hansen, T.L., J.E. Schmidt, I. Angelidaki, E. Marca, J.L.C. Jansen, H. Mosbaek, and T.H. Christensen. 2004. Method for determination of methane potentials of solid organic waste. Waste Manage. 24:393-400. https://doi.org/10.1016/j.wasman.2003.09.009
  14. Heo, N.H., S.C. Park, and H. Kang. 2004. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. J. Environ. Sci. Health A 39:1739-1756. https://doi.org/10.1081/ESE-120037874
  15. IEA. 2011. Key world energy statistics. International Energy Agency: Paris.
  16. Katuwal, H. and A.K. Bohara. 2009. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev. 13:2668-2674. https://doi.org/10.1016/j.rser.2009.05.002
  17. Kim, H.W., S.K. Han, and H.S. Shin. 2003. The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manage. Res. 21:515-526. https://doi.org/10.1177/0734242X0302100604
  18. Klass, D.L. 1974. Perpetual methane economy- is it possible? Chemische Technik. 3:161-168.
  19. Lee, D.H. S.K. Behera, J.W. Kim, and H.S. Park. 2009. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manage. 29:876-882. https://doi.org/10.1016/j.wasman.2008.06.033
  20. Liu, G., R. Zhang, R. H.M. El-Mashad, and R. Dong. 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour. Technol. 100:5103-5108. https://doi.org/10.1016/j.biortech.2009.03.081
  21. Oslaj, M., B. Mursec, and P. Vindis. 2010. Biogas production from maize hybrids. Biomass Bioenergy. 34:1538-1545. https://doi.org/10.1016/j.biombioe.2010.04.016
  22. Owen, W.F., D.C. Stuckey, and J.B.Healy Jr. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  23. Raposo, F., C.J. Banks, I. Siegert, S. Heaven, and R. Borja. 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41:1444-1450. https://doi.org/10.1016/j.procbio.2006.01.012
  24. Rincon, B., C.J. Banks, and S. Heaven. 2010. Biochemical methane potential of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice. Bioresour. Technol. 101:8179-8184. https://doi.org/10.1016/j.biortech.2010.06.039
  25. Sialve, B., N. Bernet, and O. Bernard. 2009. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 27:409-416. https://doi.org/10.1016/j.biotechadv.2009.03.001
  26. Speece, R. 1996. Anaerobic biotechnology for industrial wastewaters. Nashville: Archae press.
  27. Van Ginkel, S.W., S.E. Oh, and B.E. Logan. 2005. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydro. Energy. 30:1535-1542. https://doi.org/10.1016/j.ijhydene.2004.09.017
  28. Vergara-Fernandez, A., G. Vargas, N. Alarcon, and A. Velasco. 2008. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy. 32:338-344. https://doi.org/10.1016/j.biombioe.2007.10.005
  29. Vindis, P., B. Mursec, M. Janzekovic, and F. Cus. 2007. Processing of soyabean meal into concentrates and testing for genetically modified organism (GMO). J. Achieve Mat. Manu. Eng. 20:507-510.
  30. Weiland, P. 2010. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 85:849-860. https://doi.org/10.1007/s00253-009-2246-7
  31. Yokoyama, S., K. Jonouchi, and K. Imou. 2007. Energy production from marine biobass: Fuel cell power generation driven by methane produced from seaweed. W. Aca. Sci. Eng. Technol. 28:320-322.
  32. Zhang, R., H.M. El-Mashad, K. Hartman, F. Wang, G. Liu, C. Choate, and P. Gamble. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98:929-935. https://doi.org/10.1016/j.biortech.2006.02.039
  33. Zwietering, M.H., I. Jongenburger, F.M. Rombouts, and K. VAN 'T Riet. 1990. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 56:1875-1881.