• Title/Summary/Keyword: BMP-2, 4

Search Result 259, Processing Time 0.033 seconds

MOLECULAR BIOLOGY IN DENTAL IMPLANT (치과 임플란트에서의 분자생물학적 연구)

  • Jee, Yu-Jin;Ryu, Dong-Mok;Lee, Deok-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.616-621
    • /
    • 2008
  • Osseointegration is a result of bone formation and bone regeneration processes, which takes place at the interface between bone and implant, and it indicates a rigid fixation that can be stably maintained while functional loading is applied inside the oral cavity as well as after implant placement. Although many researches were carried out about osseointegration mechanism, but cellular and molecular events have not been clarified. With recent development of molecular biology, some researches have examined biological determinants, such as cytokine, growth factors, bone matrix proteins, during osseointegration between bone and implant surface, other researches attempted to study the ways to increase bone formation by adhering protein to implant surface or by inserting growth factors during implant placement. Cellular research on the reaction of osteoblast especially to surface morphology (e.g. increased roughness) has been carried out and found that the surface roughness of titanium implant affects the growth of osteoblast, cytokine formation and mineralization. While molecular biological research in dental implant is burgeoning. Yet, its results are insignificant. We have been studying the roles of growth factors during osseointegration, comparing different manifestations of growth factors by studying the effect of osseointegration that varied by implant surface. Of many growth factors, $TGF-{\beta}$, IGF-I, BMP2, and BMP4, which plays a significant role in bone formation, were selected, and examined if these growth factors are manifested during osseointegration. The purpose of this article is to present result of our researches and encourage molecular researches in dental implant.

Guided Bone Regeneration Using a Putty-type Demineralized Bone Matrix: Case Report (Putty형 탈회동종골을 이용한 골유도 재생술: 증례보고)

  • Jang, Han-Seung;Kim, Su-Gwan;Moon, Seong-Yong;Oh, Ji-Su;Park, Jin-Ju;Jeong, Mi-Ae;Yang, Seok-Jin;Jung, Jong-Won;Kim, Jeong-Sun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.420-424
    • /
    • 2011
  • Allomatrix (Wright Medical Tech, Inc., Arlington, Tenn, USA), is a newly designed, injectable putty with a reliable demineralized bone matrix (DBM), derived from human bone. The compound contains 86% DBM and other bone growth factors such as bone morphogenic protein (BMP)-2, BMP-4, insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-${\beta}1$. It has excellent osteoinduction abilities. In addition, DBM is known to have osteoconduction capacity as a scaffold due to its collagen matrix. This product contains a powder, which is a mix of DBM and surgical grade calcium sulfate as a carrier. A practitioner can blend the powder with calcium sulfate solution, making a putty-type material which has the advantages of ease of handling, better fixation, and no need for a membrane, because it can function as membrane itself. This study reports the clinical and radiographic results of various guided bone regeneration cases using Allomatrix, demonstrating its strong potential as a graft material.

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) (미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성)

  • Park, Jungyu;Tian, Dongjie;Lee, Beom;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.

Human Cord Serum as a Fetal Bovine Serum Substitute for the Culture of Human Amnion-Derived Stem Cells (인간의 양막유래 줄기세포의 체외 배양 시 소태아혈청 대체제로서의 인간제대혈청)

  • Kim, Jin-Young;Park, Se-A;Kang, Hyun-Mi;Kim, Eun-Su;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.85-96
    • /
    • 2007
  • Mesenchymal stem cells (MSC) are promising candidates for cell-based therapies. One major obstacle for their clinical use is the unsafety of fetal bovine serum (FBS), which is a crucial part of all media currently used for the culture of MSC. We investigated the effect of human cord serum (HCS) on the growth response, mRNA and protein expressions of human amnion-derived stem cells (HAM). HAM were isolated from the amnion after a Caesarean section and cultured in DMEM supplemented with 10% FBS, 5% HCS or 10% HCS. During culture, their biological characteristics at earlier and later passages were analyzed using RT-PCR and immunocytochemistry. Regardless of serum sources, HAM showed the prominent expression of Oct-4, Rex-1, SCF, FGF-5, BMP-4, nestin, GATA-4, NCAM and HLA ABC genes. The expression profile was observed even at later passages. Similarly, HAM cultured in either FBS or HCS exhibited the distinct protein expression of collagen I, II, III and XII, fibronectin, $\alpha$-smooth muscle actin, vimentin, CK18, CD54, FSP, TRA-1-60, SSEA-3, -4 and HLA ABC. However, desmin expression was only observed in HAM cultured in medium supplemented with FBS and vWF expression was only found in HAM cultured in medium supplemented with HCS. Overall pattern of gene and protein expression of HAM was typical of known adult stem cells such as bone marrow-derived MSC. In conclusion, HCS could be as effective as FBS for the culture of HAM.

  • PDF

Recovery of Sustainable Renewable Energy from Marine Biomass

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.156-161
    • /
    • 2012
  • Marine biomass is considered an important substrate for anaerobic digestion to recovery energy i.e. methane. Nevertheless, marine biomass has attracted little attention by researchers compared to terrestrial feedstock for anaerobic digestion. In this study, biochemical methane potential (BMP) test was used to evaluate generation of renewable energy from starfish. A cumulative biogas yield of $748{\pm}67mL\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The cumulative methane yield of $486{\pm}28mL\;CH_4\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The methane content of the biogas was approximately 70%. The calculated data applying the modified Gompertz equation for the cumulative $CH_4$ production showed good correlation with the experimental result obtained from this batch study. Since the result obtained from this study is comparable to results with other substrates, marine biomass can be co-digested with food waste or swine wastewater to produce $CH_4$ gas that will help to reduce the gap in global energy demand.

Performance assessment of an urban stormwater infiltration trench considering facility maintenance (침투도랑 유지관리를 통한 도시 강우유출수 처리 성능 평가)

  • Reyes, N.J. D.G.;Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.424-431
    • /
    • 2018
  • Stormwater runoff containing considerable amounts of pollutants such as particulates, organics, nutrients, and heavy metals contaminate natural bodies of water. At present, best management practices (BMP) intended to reduce the volume and treat pollutants from stormwater runoff were devised to serve as cost-effective measures of stormwater management. However, improper design and lack of proper maintenance can lead to degradation of the facility, making it unable to perform its intended function. This study evaluated an infiltration trench (IT) that went through a series of maintenance operations. 41 monitored rainfall events from 2009 to 2016 were used to evaluate the pollutant removal capabilities of the IT. Assessment of the water quality and hydrological data revealed that the inflow volume was the most relative factor affecting the unit pollutant loads (UPL) entering the facility. Seasonal variations also affected the pollutant removal capabilities of the IT. During the summer season, the increased rainfall depths and runoff volumes diminished the pollutant removal efficiency (RE) of the facility due to increased volumes that washed off larger pollutant loads and caused the IT to overflow. Moreover, the system also exhibited reduced pollutant RE for the winter season due to frozen media layers and chemical-related mechanisms impacted by the low winter temperature. Maintenance operations also posed considerable effects of the performance of the IT. During the first two years of operation, the IT exhibited a decrease in pollutant RE due to aging and lack of proper maintenance. However, some events also showed reduced pollutant RE succeeding the maintenance as a result of disturbed sediments that were not removed from the geotextile. Ultimately, the presented effects of maintenance operations in relation to the pollutant RE of the system may lead to the optimization of maintenance schedules and procedures for BMP of same structure.

Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets

  • Sui, Shiyan;Jia, Yimin;He, Bin;Li, Runsheng;Li, Xian;Cai, Demin;Song, Haogang;Zhang, Rongkui;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1695-1704
    • /
    • 2014
  • Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.

Optimization of Methane Yield in Anaerobic Digestion of Sewage Sludge with Microwave Pretreatment (극초단파 전처리를 적용한 하수슬러지 혐기성소화에서 메탄수율 최적화)

  • Park, WoonJi;Lee, GwanJae;Lee, DongJun;Lee, SeoRo;Choi, YuJin;Hong, JiYeong;Yang, DongSeok;Lim, KyoungJae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.17-29
    • /
    • 2020
  • The objective of this study was to find an optimum methane yield condition in anaerobic digestion of sewage sludge with microwave pretreatment. The pretreatment process was carried out using a lab scale industrial microwave unit (2,450 MHz frequency). The digestion efficiency of pretreated sludge was evaluated by biochemical methane potential (BMP) test. Box-Behnken design and Response Surface Analysis (RSA) were applied to determine the optimal combination of sludge mixing ratio (0 to 100%), power (400 to 1600 W), holding time (0 to 10 min) and pretreatment temperature (60 to 100℃). BMP test results showed that Volatile Solid (VS) removal efficiency was up to 48% at a condition of 0% for mixing ratio, 1600 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. Methane production was up to 832.3 mL/g VSremoved at a condition of 50% for mixing ratio, 1000 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. The results of the variance analysis (ANOVA) showed that the p-value of the power and pretreatment temperature among the independent variables were significant (p<0.05), and in particular, the pretreatment temperature significantly affected on the solubilization and methane production. The optimum condition for the maximum methane yield (847 mL/g VSremoved) was consist of 38.4% of mixing ratio, 909.1 W of power, 4.1 min of holding time, and 80℃ of temperature within the design boundaries.

Comparative Gene-Expression Analysis of Periodontal Ligament and Dental Pulp in the Human Permanent Teeth (사람 영구치에서 치주인대 및 치수 조직의 유전자 발현에 대한 비교 연구)

  • Lee, Suk Woo;Jeon, Mijeong;Lee, Hyo-Seol;Song, Je Seon;Son, Heung-Kyu;Choi, Hyung-Jun;Jung, Han-Sung;Moon, Seok-Jun;Park, Wonse;Kim, Seong-Oh
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.166-175
    • /
    • 2016
  • There is no genetic activity information with the functions of dental pulp and periodontal ligament in human. The purpose of this study was to identify the gene-expression profiles of, and the molecular biological differences between periodontal ligament and dental pulp obtained from human permanent teeth. cDNA microarray analysis identified 347 genes with a fourfold or greater difference in expression level between the two tissue types 83 and 264, of which were more plentiful in periodontal ligament and dental pulp, respectively. Periodontal ligament exhibited strong expression of genes related to collagen synthesis (FAP), collagen degradation (MMP3, MMP9, and MMP13), and bone development and remodeling (SSP1, BMP3, ACP5, CTSK, and PTHLH). Pulp exhibited strong expression of genes associated with calcium ions (CALB1, SCIN, and CDH12) and the mineralization and formation of enamel and dentin (SPARC/SPOCK3, PHEX, AMBN, and DSPP). Among these genes, SPP1, SPARC/SPOCK3, AMBN, and DSPP were well known in dental research. However, the other genes are the newly found and it may help to find a good source of regenerative therapy if further study is performed.