• 제목/요약/키워드: BMP(bone morphogenetic protein)

Search Result 189, Processing Time 0.023 seconds

Sinus augmentation using rhBMP-2-loaded synthetic bone substitute with simultaneous implant placement in rabbits

  • Joo, Myung-Jae;Cha, Jae-Kook;Lim, Hyun-Chang;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.2
    • /
    • pp.86-95
    • /
    • 2017
  • Purpose: The aim of this study was to determine the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded synthetic bone substitute on implants that were simultaneously placed with sinus augmentation in rabbits. Methods: In this study, a circular access window was prepared in the maxillary sinus of rabbits (n=5) for a bone graft around an implant (${\varnothing}3{\times}6mm$) that was simultaneously placed anterior to the window. Synthetic bone substitute loaded with rhBMP-2 was placed on one side of the sinus to form the experimental group, and saline-soaked synthetic bone substitute was placed on the other side of the sinus to form the control group. After 4 weeks, sections were obtained for analysis by micro-computed tomography and histology. Results: Volumetric analysis showed that the median amount of newly formed bone was significantly greater in the BMP group than in the control group ($51.6mm^3$ and $46.6mm^3$, respectively; P=0.019). In the histometric analysis, the osseointegration height was also significantly greater in the BMP group at the medial surface of the implant (5.2 mm and 4.3 mm, respectively; P=0.037). Conclusions: In conclusion, an implant simultaneously placed with sinus augmentation using rhBMP-2-loaded synthetic bone substitute can be successfully osseointegrated, even when only a limited bone height is available during the early stage of healing.

Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with two concentrations of expressed recombinant human bone morphogenetic protein 2

  • Choi, Hyun-Min;Park, No-Je;Jamiyandorj, Otgonbold;Choi, Kyung-Hee;Hong, Min-Ho;Oh, Seung-Han;Park, Young-Bum;Kim, Sung-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.4
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: The aim of this study was to determine whether biphasic calcium phosphate (BCP) bone substitute with two different concentrations of Escherichia coli-expressed recombinant human bone morphogenetic protein 2 (ErhBMP-2) enhances new bone formation in a standardized rabbit sinus model and to evaluate the concentration-dependent effect of ErhBMP-2. Methods: Standardized, 6-mm diameter defects were made bilaterally on the maxillary sinus of 20 male New Zealand white rabbits. Following removal of the circular bony windows and reflection of the sinus membrane, BCP bone substitute without coating (control group) was applied into one defect and BCP bone substitute coated with ErhBMP-2 (experimental group) was applied into the other defect for each rabbit. The experimental group was divided into 2 subgroups according to the concentration of ErhBMP-2 (0.05 and 0.5 mg/mL). The animals were allowed to heal for either 4 or 8 weeks and sections of the augmented sinus and surrounding bone were analyzed by microcomputed tomography and histologically. Results: Histologic analysis revealed signs of new bone formation in both the control and experimental groups with a statistically significant increase in bone formation in experimental group 1 (0.05 mg/mL ErhBMP-2 coating) after a 4-week healing period. However, no statistically significant difference was found between experimental group 1 and experimental group 2 (0.5 mg/mL ErhBMP-2 coating) in osteoinductive potential (P<0.05). Conclusions: ErhBMP-2 administered using a BCP matrix significantly enhanced osteoinductive potential in a standardized rabbit sinus model. A concentration-dependent response was not found in the present study.

Alk3/Alk3b and Smad5 Mediate BMP Signaling during Lymphatic Development in Zebrafish

  • Kim, Jun-Dae;Kim, Jongmin
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.270-274
    • /
    • 2014
  • Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals. However, there are no currently available pharmacological treatments for lymphedema, necessitating identification of additional factors modulating lymphatic development and function which can be targeted for therapy. In this report, we investigate the function of genes associated with Bone Morphogenetic Protein (BMP) signaling in lymphatic development using zebrafish embryos. The knock-down of BMP type II receptors, Bmpr2a and Bmpr2b, and type I receptors, Alk3 and Alk3b, as well as SMAD5, an essential cellular mediator of BMP signaling, led to distinct lymphatic defects in developing zebrafish. Therefore, it appears that each constituent of the BMP signaling pathway may have a unique function during lymphatic development. Taken together, our data demonstrate that BMP signaling is essential for normal lymphatic vessel development in zebrafish.

Emodin stimulates the osteoblast differentiation via activating bone morphogenetic protein-2 gene expression at low concentration

  • Cheon, Myeong-Sook;Lee, Su-Ui;Kim, Ho-Kyoung;Kim, Young-Sup;Min, Yong-Ki;Kim, Seong-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.1 s.19
    • /
    • pp.139-145
    • /
    • 2007
  • Emodin is one of the main active components of a traditional Korean medicine isolated from the root and rhizomes of Rheum palmatum L. In this study, of 222 natural compounds to evaluate the anabolic activities, emodin activated bone morphogenetic protein (BMP)-2 promoter in the differentiation process of mouse osteoblastic MC3T3-E1 cells. Emodin was shown to significantly stimulate the activity and expression of alkaline phosphatase, an earlyphase marker of osteoblastic differentiation, on the differentiation day 7, and induce the osteopontin mRNA expression from the differentiation day 14. In addition, low concentration (up to 5 M) of emodin dramatically promoted the induction of mineralization in MC3T3-E1 subclone 4 cells. The stimulatory effect of emodin on the osteoblast differentiation/mineralization could be associated with its potential to stimulate the BMP-2 gene expression. Although further studies are needed to determine the precise mechanism, this study suggests that the use of herbal medicine containing natural compounds with anabolic activity such as emodin could have a beneficial effect on bone health.

  • PDF

Regenerative effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) after sequestrectomy of medication-related osteonecrosis of the jaw (MRONJ)

  • Min, Song-Hee;Kang, No-Eul;Song, Seung-Il;Lee, Jeong-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.3
    • /
    • pp.191-196
    • /
    • 2020
  • Objectives: Beyond the original application approved by the U.S. Food and Drug Administration, recombinant human bone morphogenetic protein-2 (rhBMP-2) is used for medication-related osteonecrosis of the jaw (MRONJ) treatment because of its bone remodeling enhancement properties. The purpose of the study was to investigate the bone formation effect of rhBMP-2/absorbable collagen sponge (ACS) in patients with MRONJ. Materials and Methods: In this retrospective cohort study, 26 female patients diagnosed with MRONJ and who underwent mandibular sequestrectomy at Ajou University Dental Hospital from 2010 to 2018 were included. The experimental group was composed of 18 patients who received rhBMP-2/ACS after sequestrectomy, while the control group was composed of 8 patients who did not receive rhBMP-2/ACS after sequestrectomy. A total dose of 0.5 mg of rhBMP-2 was used in the experimental group at a concentration of 0.5 mg/mL. Follow-up panoramic X-rays were taken immediately after the surgery and more than 6 months after the surgery. Using those X-rays, a radiographic index of bone defect area was calculated using the modified Ihan Hren method, which measures radiographic density of the normal bone and the defect site. Results: This study suggests that rhBMP-2 contributes to new bone formation. The mean radiographic index immediately after surgery and more than 6 months after the surgery for the experimental group was 68.4% and 79.8%, respectively. The mean radiographic index immediately after surgery and more than 6 months after the surgery for the control group was 73.4% and 76.7%, respectively (Wilcoxon signed rank test, P>0.05). The mean radiographic index increased 11.4% in the experimental group and 3.27% in the control group (Mann-Whitney U-test, P<0.05). Conclusion: Based on the results, use of rhBMP-2/ACS on bone defect sites after sequestrectomy could be a successful strategy for treatment of MRONJ patients.

Effect of BMP-7 on the rat periodontal ligament cell (치주인대세포에 대한 Bone morphogenetic protein-7의 영향)

  • Kim, Kyung-Hee;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.289-298
    • /
    • 2005
  • Bone morphogenetic protein-7(BMP-7), a member of the transforming growth factor superfamily, stimulates osteoblast differentiation and bone formation. There are lots of evidences supporting a direct participation of periodontal ligament(PDL) cells on periodontal tissue regeneration. The purpose of this study was to evaluate the effect of recombinant human(rh) BMP-7 on primary rat PDL cells in vitro, with special focus on the ability of bone formation. The PDL cells were cultured with rhBMP-7 at the concentration of 0, 10, 25, 50, 100 and 200ng/ml for MTT assay. We evaluated the alkaline phosphatase activity at 3 and 5 days of incubation and the ability to produce mineralized nodules of rat PDL cells at 14 days of cell culture in concentration of 0, 10, 25, 50 and 100ng/ml. The cell activity was not reduced in cells treated with BMP-7 at $10{\sim}100ng/ml$, whereas the cell activity was reduced in the concentration of 200ng/ml than the control at day 1 and 3(p<0.01). At 3 and 5 day, alkaline phosphatase activity was significantly increased in cells treated with BMP-7 at 50ng/ml and 100ng/ml(p<0.05). The area of mineralized bone nodule was greater in cells treated with BMP-7 at 50 and 100 ng/ml than the control(p<0.01). These results suggest that rhBMP-7 stimulate rat PDL cells to differentiate toward osteoblast phenotype and secretion of the extracellular matrix of rat PDL cells.

Association of a Single Codon Deletion in Bone Morphogenetic Protein 15 Gene with Prolificacy in Small Tail Han Sheep

  • Guo, W.;Chu, M.X.;Deng, X.M.;Feng, J.D.;Li, Ning;Wu, Changxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1491-1495
    • /
    • 2004
  • Small Tail Han Sheep has significant characteristics of high prolificacy and non-seasonal ovulatory activity and is an excellent local sheep breed in P. R. China. Recently a novel member of the transforming growth factor $\beta$ (TGF$\beta$) superfamily termed bone morphogenetic protein 15 (BMP15) was shown to be specifically expressed in oocytes and to be essential for female fertility. Therefore, BMP15 is a candidate gene for reproductive performance of Small Tail Han Sheep. The whole genomic nucleotide sequence of BMP15 gene in Small Tail Han Sheep was searched for polymorphisms by PCR-SSCP and direct sequencing, and only one polymorphism was found. The polymorphism was a result of a 3 base pair deletion, which eliminated a single Leu codon (CTT). The allelic frequencies for A (without deletion) and B (with a codon deletion) are 0.73 and 0.27 respectively. The effects of BMP15 genotype on litter size were evaluated using the least squares model. This indicated that there was a significant association between litter size of Small Tail Han Sheep and a deletion in BMP15 gene (p=0.02<0.05). Small Tail Han Sheep ewes with AA and AB genotype produce on average 0.5 and 0.3 more lambs per litter than those ewes with BB genotype.

Lack of Effects of Recombinant Human Bone Morphogenetic Protein-2 on Angiogenesis in Oral Squamous Cell Carcinoma Induced in the Syrian hamster Cheek Pouch

  • Zaid, Khaled Waleed;Nhar, Bander Mossa;Alanazi, Salman Mohammed Ghadeer;Murad, Rashad;Domani, Ahmad;Alhaf, Awadh Jamman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3527-3531
    • /
    • 2016
  • Recombinant human bone morphogenetic protein-2 (rhBMP-2 ), a member of the TGF-${\beta}$ family, has been used widely in recent years to regenerate defects of the maxillary and mandible bones. Such defects are sometimes caused by resection of oral squamous cell carcinoma (OSCC) yet the biologic effects of rhBMP-2 on these carcinomas are not fully clear. The objective of this study was to determine histologically whether rhBMP-2 produces adverse effects on angiogenesis during induction of OSCC, a biologic process critical for tumor formation in an experimental model in the buccal pouch of golden Syrian hamsters. Buccal cavities were exposed to painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks, then biopsies were taken. Division was into 2 groups: a study group of 10 hamsters receiving $0.25{\mu}g/ml$ of rhBMP-2 in the $3^{rd}$ and $6^{th}$ weeks; and a control group of 10 hamsters which did not receive any additional treatment. VEGF expression and microvessel density were measured but no differences were noted between the two groups. According to this study, rh-BMP-2 does not stimulate angiogenesis during induction of OCSSs.

THE EFFECT OF BONE MORPHOGENETIC PROTEIN 2(BMP2) ON THE GROWTH OF CRANIAL BONE AND EARLY MORPHOGENESIS OF THE CRANIAL SUTURE (Bone Morphogenetic Protein 2 가 두개골 성장 및 두개봉합부의 초기형태발생에 미치는 영향)

  • Jung, Hae-Kyung;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.217-228
    • /
    • 2003
  • Co-ordinate growth of the brain and skull is achieved through a series of tissue interactions between the developing brain, the growing bones of the skull and the sutures that unite the bones. Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of these interactions. Bmp2, one of bone morphogenetic proteins (Bmps), is involved in the regulation of the shapes of individual bones and the relative proportions of the skeleton. Mutations in the homeobox gene Msx2, known as a downstream gene of Bmp, cause Boston-type human craniosynostosis. The phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. These facts suggest important roles of Bmp2, Msx2 and Dlx5 genes in the cranial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of Bmp2(E15-18), Msx2 and Dlx5 genes in the developing sagittal suture of calvaria during the embryonic stage. Bmp2 mRNA was intensely expressed in the osteogenic fronts and also at the low level in the periosteum of parietal bones during embryonic stage, Msx2 mRNA was intensely expressed in the sutural mesenchyme and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and parietal bones. To further examine the role of Bmp signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of Bmp2-soaked beads onto the osteogenic fronts after 48 hours organ culture resulted in the increase of the tissue thickness and cell number around Bmp2 beads, compared to BSA control beads. In addition Bmp2 induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of FGF2 did not induce the expression of Msx2 and Dlx5. Taken together, these data indicate that Bmp2 signaling molecule has a important role in regulating the cranial bone growth and early morphogenesis of cranial suture. We also suggest that Bmp signaling is involved in all the stages of osteogenesis of cranial bones and the maintenance of cranial suture by regulating Msx2 and Dlx5 genes, and that Msx2 and Dlx5 genes are specific transcription factors of Bmp signaling pathway.

  • PDF

Dickkopf-1 is involved in BMP9-induced osteoblast differentiation of C3H10T1/2 mesenchymal stem cells

  • Lin, Liangbo;Qiu, Quanhe;Zhou, Nian;Dong, Wen;Shen, Jieliang;Jiang, Wei;Fang, Ji;Hao, Jie;Hu, Zhenming
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.179-184
    • /
    • 2016
  • Bone morphogenetic protein 9 (BMP9) is a potent inducer of osteogenic differentiation of mesenchymal stem cells. The Wnt antagonist Dickkopf-1 (Dkk1) is involved in skeletal development and bone remodeling. Here, we investigated the role of Dkk1 in BMP9-induced osteogenic differentiation of MSCs. We found that overexpression of BMP9 induced Dkk1 expression in a dose-dependent manner, which was reduced by the P38 inhibitor SB203580 but not the ERK inhibitor PD98059. Moreover, Dkk1 dramatically decreased not only BMP9-induced alkaline phosphatase (ALP) activity but also the expression of osteocalcin (OCN) and osteopontin (OPN) and matrix mineralization of C3H10T1/2 cells. Furthermore, exogenous Dkk1 expression inhibited Wnt/β-catenin signaling induced by BMP9. Our findings indicate that Dkk1 negatively regulates BMP9-induced osteogenic differentiation through inhibition of the Wnt/β-catenin pathway and it could be used to optimize the therapeutic use of BMP9 and for bone tissue engineering.