영상분할은 입력된 영상을 처리하여 유사한 화소들의 집합인 영역들로 화소들을 구분하는 작업이다. 영상분할의 결과는 영상인식의 정확성에 큰 영향을 미친다. 본 논문에서는 유전자 알고리즘을 이용하여 마르코프 랜덤 필드(Markov random field)에 기반한 영상분할 방법을 제안한다. 제안한 방법에서는 잡음과 흔들림(blurring)에 강한 MRF를 이용하여 영상을 모델링 한다. HRF기반 영상분할 방법은 왜곡에 강한 반면, 정확한 파라미터의 추정이 요구된다. 그래서 , 추정방법으로 많은 파라미터를 포함하는 문제를 다루는데 효율적인 유전자 알고리즘을 사용한다. 실 영상을 가지고 수행된 실험 결과와 자동 차량 추출 시스템에의 응용결과는 제안된 방법의 효율성을 보여준다.
평탄한 잡음 주파수 특성을 갖는 예측부호화에서 신호 압축을 목표로하여 적절한 잡음 감소 회로를 사용한다면 높은 주파수 성분으로 천이시킬 수 있다. 이 경우 직접 잡음을 제어하는 필터를 사용하는 방법이 있으나 본 논문에서는 신호를 몽롱화(blurring)하는 알고리즘의 특성을 정보령 압축과 잡음 처리면에서 연구하였다 전처리 필터의 몽롱화 과정에 균등 가중이 도입되었으며 이 몽롱화 후처리 필터에 의해 신호가 복원된다. 이처럼 주파수 영역에서 잡음 천이 범위는 필터 크기에 의존한다. 신호몽롱화에 의해 잡음이 증가하기는 하나 지역 통과 특성을 갖는 시각적 감도에 적합한 부호화에 효과적임을 보았다.
영상처리에서 많이 사용되고 있는 확대기법은 보간법을 이용하여 영상을 확대하고 있다. 이러한 보간법은 확대시 영상의 손실을 가져오는 블록화 현상이나 몽롱화현상이 발생한다. 본 논문에서는 경계선을 이용하여 기존의 영상확대기법을 개선하였다. 제안된 기법은 확대시 영상의 빈 공간을 채우는 기존의 보간법과 달리 입력영상의 부대역을 이용하여 영상을 확대하였다. 영상의 부대역은 각 대역별로 유사한 특징이었으므로 피라미드 분해기법에 의해 필요한 상위대역을 계산하여 확대하였다. 실험결과, 기존의 확대기법보다 영상손실을 제거하였으며, 처리시간을 줄일 수 있었다.
In order to post process the vector-quantized images employing the theory of projections onto convex sets or the constrained minimization technique, the the projector onto QCS(quantization constraint set) as well as the filter that smoothes the lock boundaries should be investigated theoretically. The basic idea behind the projection onto QCS is to prevent the processed data from diverging from the original quantization region in order to reduce the blurring artifacts caused by a filtering operation. However, since the Voronoi regions in order to reduce the blurring artifacts caused by a filtering operation. However, since the Voronoi regions in the vector quantization are arbitrarilly shaped unless the vector quantization has a structural code book, the implementation of the projection onto QCS is very complicate. This paper mathematically analyzes the projection onto QCS from the viewpoit of minimizing the mean square error. Through the analysis, it has been revealed that the projection onto a subset of the QCS yields lower distortion than the projection onto QCS does. Searching for an optimal constraint set is not easy and the operation of the projector is complicate, since the shape of optimal constraint set is dependent on the statistical characteristics between the filtered and original images. Therefore, we proposed a hyper-cube as a constraint set that enables a simple projection. It sill be also shown that a proper filtering technique followed by the projection onto the hyper-cube can reduce the quantization distortion by theory and experiment.
International Journal of Fuzzy Logic and Intelligent Systems
/
제12권3호
/
pp.250-255
/
2012
Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권5호
/
pp.2529-2543
/
2019
Scanning electron microscopy (SEM) image can link with the microscopic world through reflecting interaction between electrons and materials. The SEM images are easily subject to blurring distortions during the imaging process. Inspired by the fact that dark channel prior captures the changes to blurred SEM images caused by the blur process, we propose a method to evaluate the SEM images sharpness based on the dark channel prior. A SEM image database is first established with mean opinion score collected as ground truth. For the quality assessment of the SEM image, the dark channel map is generated. Since blurring is typically characterized by the spread of edge, edge of dark channel map is extracted. Then noise is removed by an edge-preserving filter. Finally, the maximum gradient and the average gradient of image are combined to generate the final sharpness score. The experimental results on the SEM blurred image database show that the proposed algorithm outperforms both the existing state-of-the-art image sharpness metrics and the general-purpose no-reference quality metrics.
본 논문에서는 악의적인 공격에는 워터마크가 쉽게 깨어지고 비악의적인 공격에는 워터마크가 쉽게 깨어지지 않도록 하는 투 가지 목적을 동시에 만족시키기 위한 다중 워터마킹 알고리즘을 제안한다. Discrete Wavelet Transform(DWT)의 계수를 이용해 이미지를 인증하는 기법으로, 워터마크로 사용될 이진 이미지와 LL3 영역에서 추출된 특징을 조합하여 이미지에 삽입될 정보를 생성한다 이미지의 공간영역과 주파수영역에 정보를 다중으로 삽입하여 공간영역에서 일어날 수 있는 악의적인 공격에 대응할 뿐만 아니라 주파수영역에서의 blurring, sharpening 및 JPEG 압축과 간은 비 악의적인 공격을 허용하는 기법이다. 공간영역에서는 이미지 블록의 모든 픽셀의 Least Significant Bit(LSB)에 정보를 삽입하고, 주파수영역에서는 삽입할 정보에 따라 LH2와 HL2의 계수를 조절하므로 정보를 삽입하게 된다.
Objectives: This study is to report the usefulness of ultrasound in diagnosing plantar fasciitis and the effectiveness of ultrasound-guided bee venom pharmacopuncture as a treatment of it. Methods: A 61-year-old woman suffered from plantar fasciitis on her right foot for 1 month. The sonographic findings were fascial thickening, blurring of perifascial border and perifascial effusion. The ultrasound-guided bee venom pharmacopuncture for 6 times and conventional Korean medicine therapies like acupuncture and moxibustion for 12 times in 5 weeks. Numeric rating scale (NRS) and foot function index(FFI) was used to evaluate the pain and its progress. and thickness of plantar fascia was measured by sonography every week. Results: After treatments, NRS and FFI were reduced from 10 to 1 and from 190 to 72. The thickness of fascia was reduced from 0.43cm to 0.40. Blurring and effusion of perifascial border were also improved. Conclusion: This report suggests that the Ultrasound-guided Bee Venom Pharmacopuncture is effective for Plantar Fasciitis. Ultrasonography could be one of the most valuable items in the clinical practice of Korean medicine doctors who seek minimally invasive treatment.
최근 인공지능과 IoT 기술의 발달에 따라 다양한 분야에서 자동화와 무인화가 진행되고 있으며, 이의 기반이 되는 물체 추적, 의료 영상, 객체 인식과 같은 영상처리에 대한 중요성이 높아지고 있다. 특히 세밀한 데이터 처리가 필요한 시스템에서는 전처리 단계로 잡음 제거를 사용하고 있으나, 기존 알고리즘은 필터링 과정에서 블러링 현상이 나타나는 단점을 가지고 있다. 따라서 본 논문에서는 필터링 과정의 정보손실을 최소화하기 위해 변형된 공간 가중치를 사용한 필터 알고리즘을 제안한다. 제안한 알고리즘은 AWGN을 제거하기 위해 마스크 매칭을 사용하였으며, 변형된 공간 가중치의 출력을 가감하여 필터의 출력을 구하였다. 제안한 알고리즘은 기존 방법에 비해 잡음제거 특성이 우수하였으며, 블러링 현상을 최소화하며 영상을 복원하였다.
We propose a method to suppress the speckle noise and blur effects of the light field extracted from a hologram using a deep-learning technique. The light field can be extracted by bandpass filtering in the hologram's frequency domain. The extracted light field has reduced spatial resolution owing to the limited passband size of the bandpass filter and the blurring that occurs when the object is far from the hologram plane and also contains speckle noise caused by the random phase distribution of the three-dimensional object surface. These limitations degrade the reconstruction quality of the hologram resynthesized using the extracted light field. In the proposed method, a deep-learning model based on a generative adversarial network is designed to suppress speckle noise and blurring, resulting in improved quality of the light field extracted from the hologram. The model is trained using pairs of original two-dimensional images and their corresponding light-field data extracted from the complex field generated by the images. Validation of the proposed method is performed using light-field data extracted from holograms of objects with single and multiple depths and mesh-based computer-generated holograms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.