• Title/Summary/Keyword: BLEVE

Search Result 29, Processing Time 0.032 seconds

LPG충전소의 BLEVE현상에 따른 피해 분석

  • Jo, Sam-Gyu;Kim, Tae-Hwan;Ham, Eun-Gu
    • LP가스
    • /
    • s.67
    • /
    • pp.26-32
    • /
    • 2000
  • 도심지내에 위치한 부천 LPG충전소 사고 조사를 통하여 가장 피해효과가 큰 탱크로리 폭발에 따른 결과를 분석하였다. 분석범위는 BLEVE 현상에 의한 방출열과 과압이 충전소 주변에 위치한 구조물이나 인체에 미치는 영향을 대상으로 실제 현장조사를 통하여 수집된 피해결과와 이론적인 모델(PHAST-Process Hazad Analysis Software Tools) 분석 결과를 비교하였다. 부천 LPG 충전소 폭발 사고의 피해효과는 방출열의 경우 두 가지 모두 큰 차이를 보이지 않았으나 과압의 경우, 실제 피해는 이론적 모델 분석결과의 약 15%정도에 해당하는 축소된 거리에서 나타났다. 또한 충전소 인근에 위치한 구조물에 대한 피해효과는 부분적으로 과압에 의한 균열 및 붕괴 현상보다는 열 효과에 의한 콘크리트 강도 저하와 성상변화가 크게 나타났다.

  • PDF

A Study on the Safety of Small LPG Storage Tanks at External Fires (외부화재시 LPG 소형저장탱크의 안전성에 관한 연구)

  • Yim, Ji-Pyo;Ma, Byung-Chol;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.64-72
    • /
    • 2015
  • The purpose of this study is to study the safety of a small LPG storage tank with a capacity less than 3 ton when it is exposed to an external fire. First, simulation studies were carried out using ASPEN Plus and PHAST to demonstrate that overpressurization in the tank can be relieved by discharging the LPG through an adequately sized safety valve, but the release may lead to the secondary risk of fire and explosion around the tank. Next, the temporal variations of the temperatures of the lading and tank wall were obtained using AFFTAC, which showed that the tank wall adjacent to the vapor space could be overheated in about 11 min to such a point that the weakened strength might cause a rupture of the tank and subsequent BLEVE. The consequences of the BLEVE were estimated using PHAST. Finally, several practical measures for preventing the hazards of overheating were suggested, including an anti-explosion device, sprinkling system, insulation, heat-proof coating, and enhanced safety factor for tank fabrication. The effectiveness of these measures were examined by simulations using AFFTAC and ASPEN Plus.

The Study on the Quantitative Analysis in LPG Tank's Fire and Explosion (LPG 저장탱크에서의 화재$\cdot$폭발에 관한 정량적 영향 평가에 관한 연구)

  • Bae Sung-Jin;Kim Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 1999
  • Chemical plant's fire and explosion does not only damage to the chemical plants themselves but also damage to people in or near of the accident spot and the neighborhood of chemical plant. For that reason, Chemical process safety management has become important. One of safety management methods is called 'the quantitative analysis', which is used to reduce and prevent the accident. The results of the quantitative analysis could be used to arrange the equipments, evaluate the minimum safety distance, prepare the safety equipments. In this study we make the computer program to make easy to do Quantitative analysis of the accident. The output of the computer program is the magnitude of fire(pool fire and fireball) and explosion(UVCE and BLEVE) effects. We used the thermal radiation as a measure of fire magnitude and used the overpressure as a measure of explosion magnitude. In case of BLEVE, the fly distance of fragment can be evaluated. Also probit analysis was done in every case. As the case study, Buchun LPG explosion accident in Korea was analysed by the program developed. The simulation results showed that the permissible distance was 800m and probit analysis showed that 1st degree bum, 2nd degree burn, and death distances are 450, 280, 260m, respectively the simulation results showed the good agreement with the results from SAFER PROGRAM made by Dupont.

  • PDF

A Study on the Possibility of BLEVE and UVCE for a LPG Storage Tank of Underground Containment Type (지하격납형 LPG 저장탱크에서의 BLEVE와 UVCE 가능성 해석)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Lee, Jong-Rark
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.313-315
    • /
    • 2008
  • 본 논문에서는 지하격납형 LPG저장탱크에서의 가스누출로 인한 폭발의 가능성을 파악하기 위한 것으로, 국내 LPG저장탱크의 설치는 가스관계법에 의하여 지상형과 지하매몰형이 있으며, 지상형은 화염 등에 의한 위험성이 높으며, 지하매몰형은 부식 등에 의한 경제적 손실이 크다. 따라서 지상형과 지하매몰형의 장점을 취한 지하격납형 LPG저장탱크의 안전성을 통한 법 적용여부를 파악하기 위한 기본연구이다.

  • PDF

Availability Analysis of Safety Devices installed for Preventing Accidental Event in the LPG Refuelling Station (LPG충전소 안전장치의 사고방지 효과에 대한 정량적 분석)

  • Lee Jin-Han;Yu Kwang-Soo;Park Kyo-Shik
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.26-31
    • /
    • 2006
  • For the purpose of evaluating the availability of manifold safety devices installed in the LPG(Liquefied Petroleum Gas) refuelling stations, the quantitative analysis of the frequency on BLEVE(Boiling Liquid Expanding Vapor Explosion) scenario was performed. The amount of frequency reduction was the way of assessing safety devices availability. In this analysis, we could find out what sorts of safety devices are essential to satisfy acceptable social risk criteria and are prioritized to install in the future.

  • PDF

Impact Range Analysis of Small LPG Storage Tank Explosions at Highway Rest Areas (고속도로 휴게소 소형 LPG 저장탱크 폭발에 따른 영향범위 분석)

  • Seung duk Jeon;Soon Beom Lee;Jai Young Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.319-327
    • /
    • 2023
  • This study analyzes the risks of explosions of small LPG storage tanks installed at highway rest areas. For this purpose, the ranges of the effect of thermal radiation and overpressure caused by the BLEVE(Boiling Liquid Expansion Vapor Explosion)and VCE(Vapor Cloud Explosion) of a 2900-kg small LPG storage tank installed at highway rest areas were quantitatively evaluated by applying the Areal Location of Hazardous Atmospheres program. The ranges of influence of the derived explosion overpressure and thermal radiation were found to have a maximum radii of 336 m and 423 m, respectively. The study determined that those within 269 m could be severely injured by an explosion overpressure of 3.5 psi, and fatalities from thermal radiation of 10 kw/m2 could occur within 192 m of the exploded storage tank. The safety management plan for the LPG storage tank was discussed while considering the auxiliary facilities of highway rest areas and the extent of the damage impact. These research results will help improve safety accident prevention regulations considering the environment and facilities of the rest areas as well as the safety management of small LPG storage tanks installed at highway rest areas.

LPG충전소 사고사례 분석을 통한 문제점 고찰

  • 윤재건;장우정
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.195-200
    • /
    • 1999
  • 지난해 LPG충전소 두 곳에서 큰 폭발사고가 발생하여 LPG 충전소의 위험에 대하여 일반의 관심이 크게 고조되었고, 사고 이후 LPG 충전소의 안전관리에 대한 기준은 계속 강화되고 있다. 특히 부천에서의 사고는 아직도 원인이 규명되지 않은 채 책임과 보상문제를 위한 재판이 계속되고 있다. 발생가능성이 매우 희박하다던 BLEVE(Boiling Liquid Evaporating Vapor Explosion)폭발을 경험한 많은 사람들도 LPG 충전소의 안전관리를 위한 많은 규제와 기준을 제한하고 있다. (중략)

  • PDF

Effect Model Simulator에 의한 Rapid Risk Ranking Index 개발

  • 김형석;김윤화;김인원;고재욱
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.121-124
    • /
    • 1998
  • 화학공업은 고도의 기술집약적 장치산업이며 가연성 및 반응성이 높은 물질을 고온, 고압하에서 사용ㆍ저장하고 있기 때문에 화재 및 폭발사고의 가능성이 항상 잠재하고 있다. 특히, 화학공장에서 사용하는 대부분의 물질이 BLEVE (Boiling Liquid Expanding Vapor Expansion)와 VCE(Vapor Cloud Explosion)를 유발할 수 있는 가연성 물질이므로 사회적 문제를 야기할 수 있는 중대재해가 발생할 수 있다. (중략)

  • PDF

A Study on Mitigating Accidents for Liquid Hydrogen (액체수소 사고피해 완화기술에 대한 연구)

  • Jo, Young-Do;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.29-33
    • /
    • 2012
  • This paper is an attempt to give a concise overview of the state-of-the-art in the recent liquid hydrogen safety researches with unwanted event progress. The vessel of liquified hydrogen may fail and liquid hydrogen spilled. The hydrogen will immediately start to evaporate above a pool and make a hydrogen cloud. The cloud will disperse and can produce a vapor cloud explosion. The vessel containing the liquid hydrogen may not be able to cope with the boil-off due to heat influx, especially in case of a fire, and a BLEVE may occur. In equipment where it exists as compressed gas, a leak generates a jet of gas that can self-ignite immediately or after a short delay and produce a jet flame, or in case it ignites at a source a certain distance from the leak (delayed ignition), a flash fire occurs in the open and with confinement a deflagration or even detonation may develop. The up-to-date knowledge in these events, recent progress and future research are discussed in brief.

A Development of Expert System for the Estimated Maximum Loss of Vapor Cloud Explosion (증기운 폭발시의 예상최대손실 산정을 위한 전문가 시스템 개발)

  • 김원철
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.37-42
    • /
    • 1996
  • The assessment of catastrophic accidents such as BLEVE, vapor cloud explosion, and toxic material releases in the chemical process industries(CPI) shall be carried out according to the Requirement of PSM/SMS enforced by Korea Government Agencies, but reasonable models are not proposed for the practical application. The traditional models, TNT Equivalency Model, are well-known and helpful for the assessment of vapor cloud explosion. However, the estimated-damage-area using the traditional model has much more deviations comparing to the real damage caused by vapor cloud explosion suffered before. These are why an expert system for the assessment of vapor cloud explosion has been developed, which is based on theoretical, statistical and experimental data, and it would be helpful for CPI to evaluate the damage-area in case of vapor cloud explosion.

  • PDF