• Title/Summary/Keyword: BLDC control

Search Result 485, Processing Time 0.033 seconds

A Study on the Design and Implementation of 2-phase BLDC Fan Motor with 1-horsepower Class for Air Conditioning (공조용 1마력급 2상 BLDC 팬모터의 설계 및 구현에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.757-764
    • /
    • 2018
  • This paper describes the design and implementation of a 1hp class two-phase type BLDC fan motor used in an air conditioning system. The BLDC motor, which is implemented in this study, is not a commutator motor type with excellent lifetime and durability and is driven by two phase power source. The most important target specification of a motor used in an air conditioning system is that it has a high efficiency at the rated operating point. For this purpose, we designed the stator shape of the BLDC motor, the design of the rotor magnet, and the control circuit for driving. The BLDC motor has a structure where the motor part, the control part, and the power part are integrated. The finite element analysis was used to calculate the characteristics of the BLDC motors, and the conformity of the design results was confirmed by fabricating and testing the prototype model.

Position Sensorless Starting of BLDC Motor for Compressor (압축기용 BLDC 전동기의 센서리스 기동)

  • Lee, Kwang-Woon;Lee, Joon-Hwan;Choi, Jae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.440-446
    • /
    • 2006
  • The magnitude of output torque in a BLDC Motor depends on torque angle so that the exact initial position of rotor is essentially required for good starting. This paper presents a novel starting control method for smooth starting in a position-sensorless controlled BLDC motor drive for reciprocating compressor of refrigerator. The proposed method starts a BLDC motor using information on the initial position of rotor, determined from current response characteristics, and shows robust starting capability to starting load variations. The effectiveness of the proposed method is verified through experimental results.

Design of a Sliding Mode Speed Controller for the BLDC Motor Using the Space Vector Modulation Technique (공간벡터 변조법을 적용한 BLDC 전동기에 대한 슬라이딩 모드 속도 제어기 설계)

  • 최중경;박승엽;황정원
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1125-1128
    • /
    • 1999
  • This paper presents a speed controller for the Sinusoidal type BLDC motor using the sliding mode. Since the sliding mode control has some practical limitations such as the chattering phenomenon and reaching phase problems, the technique of overcoming these limitations is proposed in a practical realization. This proposed speed control technique is composed of an smooth integral variable structure control(IVSC), and chattering prediction method.

  • PDF

자기동조법에 의한 BLDC전동기의 정밀 위치제어

  • 정석권;전봉환;유휘룡;김효석;김상봉;이판묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.460-465
    • /
    • 1994
  • A high precision position control techinque of Brushless DC(BLDC) motor system with time varying parameters is expressed using the self tuning control method. The time varying parameters is estimated on real time by detecting voltage references from controller and mechanical motor speeds from tacho-generator. The effectiveness of the method is evaluated through the positon control experimental results of a BLDC motor system for reference change and arbitrary disturbance.

  • PDF

Robust PID Controller Tuning Technique and Applicationi to Speed Controller Design for BLDC Motors (견실 PID 제어기 조정기법 및 BLDC 모터의 속도제어기 설계에의 응용)

  • Kim, In-Soo;Lee, Young-Jin;Park, Sung-Jun;Park, Han-Woong;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.126-133
    • /
    • 2000
  • This paper is a study on robust PID controller tuning technique using the frequency region model matching method.To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input first an {{{{ETA _$\infty$}}}} controller satisfying given performances is designed using an H$_{\infty}$ control method, And then the parameters(proportional gain integral gain and derivation gain) of the robust PID controller with the performances of the desinged H$_{\infty}$ controller are determined using the model matching method at frequency domain. in this paper this PID controller tuning technique is applied to PID speed controller design for BLDC motors. Consequently simulation results show that the proposed PID speed controller satisfies load torque disturbance attenuation and robust tracking property and this study has usefulness and applicability for the speed control system; design of BLDC motors.

  • PDF

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

Drive Control System of InWheel Type BLDC for Electric Bicycle (전기자전거용 BLDC 구동장치 개발)

  • Kim, Y.K.;Choi, S.C.;Lee, J.W.;Chung, G.B.;Mok, H.S.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.63-64
    • /
    • 2010
  • 본 논문에서는 전기자전거용 BLDC를 구동할 수 있는 구동제어시스템을 설계하였으며, BLDC 전동기와 구동원리에 대해 특성을 파악하였다. 제어보드는 TI사의 TMS320F2808을 이용하여 6-스텝 인버터를 구동하였으며, PI제어를 적용하여 전류제어를 통해 전기자전거용 BLDC 구동장치를 구현 하였다.

  • PDF

Design and Implementation of BLDC Drive Control System for Electric Bicycle (전기자전거의 BLDC 구동제어시스템 설계 및 구현)

  • Cho, Sung-Nam;Son, Young-Dae;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.136-138
    • /
    • 2008
  • 본 논문에서는 전기자전거에 응용할 수 있는 BLDC 전동기의 구동제어시스템을 설계하였으며, 시뮬링크를 이용한 시뮬레이션을 통해 BLDC 전동기와 그 구동제어시스템의 특성파악을 수행 하였다, 모터 컨트롤 전용 16비트 마이크로컨트롤러인 dsPIC30F3010을 탑제하여 시스템을 설계하였으며, 2상 여자 제어법을 적용하여 6-스텝 인버터를 구동하고, PID 연산을 수행, 속도제어 방법을 통하여 전기자전거에 사용할 수 있는 BLDC 전동기의 구동제어시스템을 구현 하였다.

  • PDF

Lead Angle Auto Tuning Technique for Optimal Control of BLDC Motor (BLDC모터 최적 제어를 위한 Lead Angle Auto Tuning 기법)

  • Ahn, Sung-Kuk;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.399-400
    • /
    • 2020
  • 본 논문은 Sensored BLDC 모터의 제어방법을 설명하고, 효율적인 최적 제어를 하기위해 Lead Angle 제어를 하는 방법에 대하여 설명하였다. Lead Angle 값을 실시간 Auto Tuning 하는 기법을 설계 및 구현하였다. 실제 Microchip 사의 DSC를 사용하여 Software로 동작을 구현하였으며, PWM 스위칭 하기 위한 반도체 소자는 IGBT 모듈인 IPM을 사용하여 BLDC 모터의 구동회로인 인버터를 구성하였다. 실제 사용하는 400W급 BLDC 모터를 사용하여 Lead Angle 제어와 Auto Tuning 실험결과를 비교 검증하였다.

  • PDF

Sensorless Control of BLDC Motor using d-q Synchronously Rotating Reference Frame Concept (d-q 동기좌표 변환 개념을 이용한 BLDC 전동기의 센서리스)

  • Moon, Jong-Joo;Heo, Hong-Jun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.232-238
    • /
    • 2015
  • A sensorless control algorithm of brushless DC (BLDC) motors with a model current based on 120 degree conduction mode is proposed in this paper. The rotor speed and position can be estimated using the current model of BLDC motor, which is a modified version of the conventional current model of permanent magnet synchronous motor. The rotor speed and position can be obtained using the difference of the actual current and the model current. The position error caused by the parameter errors of the model current is compensated using a PI controller and the feedback loop of the real current. The validity of the proposed sensorless control algorithm is verified through simulation.