• Title/Summary/Keyword: BLDC (Brushless DC) Motor

Search Result 356, Processing Time 0.028 seconds

An Adaptive Fuzzy Tuning Method for the Speed Control for BLDG Motor Drive (BLDC 전동기의 속도 제어를 위한 적응 퍼지 기법)

  • Kwon, Chung-Jin;Han, Woo-Yong;Kim, Sung-Joong;Lee, Chang-Goo;Lim, Jeong-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1142-1144
    • /
    • 2003
  • This Paper presents a speed controller based on the adaptive fuzzy tuning method for brushless DC(BLDC) motor drives under load variations. Generally, the speed tracking control systems use PI controller due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, PI controller of which the parameters are modified during operation by adaptive fuzzy tuning method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained. Simulation results show the usefulness of the proposed controller.

  • PDF

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • Kim Tae-Sung;Ahn Sung-Chan;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.25-29
    • /
    • 2001
  • The BLDCM (Brushless DC Motor) characterized by linear torque to current, and speed to voltage has low acoustic noise, and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. But, it produce torque ripple due to the motor inductance components in stator windings and back-EMF, when armature current is commutated. Therefore, it is difficult to apply the BLDCM to a precision servo drive system. In this paper is proposed to a new current control algorithm with using fourier series coefficients can minimize torque ripple due to the phase current commutation of BLDCM. Simulation and Experimental results prove the effectiveness the proposed algorithm through comparison with the conventional used unipolar PWM method.

  • PDF

A study on BLDC motor for bus cooling fan system (상용차용 쿨링팬 구동 전동기의 설계 및 특성분석)

  • Seo, Jungmoo;Kim, Youngkyun;Kim, JooHan;Gu, Bongwan;Jung, Insoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.215-215
    • /
    • 2011
  • 본 논문은 상용차용 전동 쿨링팬 모듈의 개발을 위한 5kW급 브러시리스 DC 전동기에 관하여 기술한다. 개발 대상전동기는 정격 3,000rpm의 회전속도를 목표로, 기존 팬 쉬라우드에 장착 가능한 박형으로 설계되며, 코깅토크 저감을 위한 회전자와 고정자 형상 최적화를 수행하여, 구동시 소음과 진동을 감소시키고자 하였다. 전동기를 제작하여 입출력 특성을 분석하고, 최종적으로 기 개발된 팬 블레이드와 결합하여, 쿨링팬 시스템의 유량 및 유압 특성시험을 진행하였다.

  • PDF

Precise Position Synchronous Control of Two-Axes System Using Two-Degree-of-Freedom PI Controller in BLDC Motor (2자유도 PI 제어기를 이용한 2축 BLDC 모터 시스템의 정밀 위치동기 제어)

  • Yoo, S.K.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.104-113
    • /
    • 2001
  • This paper describes a precise position synchronous control of two axes rotating system using BLDC motors and a cooperative control based on decoupling technique and PI control law. The system is required performances both good speed following and minimum position synchronous errors simultaneously. To accomplish these goals, the three kinds of controllers are designed. At first, the current and speed controller are designed very simply to compensate the influences of disturbances and to follow up speed references quickly. Especially, the two degree of freedom PI controller is used considering both good tracking for speed reference input and quick rejection of disturbances in speed controller. Finally, a position synchronous controller is designed as a simple proportional controller to minimize position synchronous errors. The validity of the proposed method is confirmed through some numerical simulations. Moreover, the results are compared to the conventional master-slave control ones to show the effectiveness of the proposed system.

  • PDF

Structural Design for Vibration Reduction in Brushless DC Stator

  • Jafarboland, Mehrdad;Farahabadi, Hossein Bagherian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1842-1850
    • /
    • 2017
  • Reducing the noise and vibration of the BLDC motors is very essential for some special applications. In this paper, a new structural design is introduced to increase the natural frequencies of the stator in BLDC motors as increasing the natural frequencies can reduce the severe effects of the structural resonances, including high levels of noise and vibration. The design is based on placing a single hole on definite regions at the stator cross sectional area (each region contains one tooth and its upper parts in the stator yoke) in an optimum way by which the natural frequencies at different modes are shifted to the higher values. The optimum diameter and locations for the holes are extracted by the Response Surface Methodology (RSM) and the modal analyses in the iterative process are done by Finite Element Method (FEM). Moreover, the motor performance by the optimum stator structure is analyzed by FEM and compared with the prototype motor. Preventing the stator magnetic saturation and the motor cogging torque enhancement are the two constraints of the optimization problem. The optimal structural design method is applied experimentally and the validity of the design method is confirmed by the simulated and experimental results.

Controller Design of BLDC Motor Fin Position Servo System by Employing H-infinity Loop Shaping Method (H-infinity Loop Shaping 방법을 이용한 BLDC 전동기 핀 위치제어시스템 제어기 설계)

  • Zhu, He-Lin;Mok, Hyung-Soo;Lee, Hyeong-Geun;Han, Soo-Hee;Seo, Hyeon-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2019
  • This study proposes a robust control of a fin position servo system using the H-infinity loop-shaping method. The fin position control system has a proportional (P) position controller and a proportional-integral (PI) controller. In this work, the position control loop requires a wide bandwidth. No current control loop exists due to the compact design of the system. Hence, the controller parameters are difficult to determine using the traditional cascade design method. The $H_{\infty}$ controller design method is used to design the controller's gain to achieve good performance and robustness. First, the transfer function of the system, which can be divided into tunable and fixed parts, is derived. The tunable part includes the position P controller and speed PI controller. The fixed part includes the rest of the system. Second, the optimized controller parameters are calculated using Matlab $H_{\infty}$ controller design program. Finally, the system with optimized controller is tested by simulation and experiment. The control performance is satisfactory, and the $H_{\infty}$ controller design method is proven to be valid.

Novel Iron Loss Modeling of the BLDC Motor for Fuel Pump by Considering Non Sinusoidal Distributed Magnetic Flux Density Effect in Stator Core (BLDC 전동기 고정자 코어의 비정현적인 자속밀도 분포특성를 고려하기 위한 철손 모델링에 대한 연구)

  • Ikram, Junaid;Junaid, Qudsia;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.758_759
    • /
    • 2009
  • In the design and analysis of electric machines the precise calculation of iron loss has incredible significance. It is tough to foresee iron losses precisely in machines due to distribution of non sinusoidal flux density. It is necessary to approximate the iron losses for the precise computation of efficiency. This paper presents a novel approach for the prediction of iron losses of the brushless dc (BLDC) motors by considering the effects of minor hysteresis loops in the simplified model. The novel iron loss model results are compared with the simplified model and with finite element method (FEM).

  • PDF

Robust Control of Brushless DC Motor Using Disturbance Observer (외란 관측자를 이용한 BLDC 모터의 강인 제어)

  • Yu, Byung-Sam;Shin, Doo-Jin;Kim, Kwang-Young;Huh, Uk-Youl;Kim, Jin-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.909-911
    • /
    • 1999
  • This paper proposes a robust control system with the disturbance observer for BLDC servo system. The overall control system is composed of the speed controller which is implemented with PI controller and the disturbance observer with free parameters. The BLDC servo system can improve the closed loop characteristics without affecting the command input response. The characteristics of the closed loop system is improved by suppressing disturbance effectively with the disturbance observer. Measurement noise is also considered by adjusting bandwidth of free parameters. We can overcome the drawbacks of the conventional PI controller. Finally, the performance of the controller is analyzed theoretically and some simulation results are presented to demonstrate the better performance than the conventional PI controllers.

  • PDF

A Fuzzy Back-EMF Observer for Sensorless Drive of BLDC Motor (브러시리스 전동기의 센서리스 구동을 위한 퍼지 역기전력 관측기)

  • Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • In this paper, a novel sensorless drive for brushless DC (BLDC) motor using the fuzzy back-EMF observer is proposed to improve the performance of conventional sensorless drive methods. Existing sensorless drive methods of the BLDC motor have low performance at transients or low speed range and occasionally require additional circuits. To cope with these problems, the back-EMF of the BLDC motor must be precisely estimated by a fuzzy logic, which is suitable to estimate the back-EMF which has a trapezoidal shape. The proposed algorithm using fuzzy back-EMF observer can achieve robust control for the change of an external condition and continuously estimate position of the rotor at transients as well as at steady state. The superiority of the proposed algorithm is proved through the simulation compared with other sensorless drive methods.