• Title/Summary/Keyword: BLDC(brushless DC) motor

Search Result 356, Processing Time 0.03 seconds

Modeling and Simulation of Interior Permanent - Magnet BLDC Motor Drive (영구자석 매입형 BLDC 모터 제어기의 모델링 및 시뮬레이션)

  • 이동명;안준호;염관호;조관열;김학원
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.332-336
    • /
    • 1998
  • Recently, the BLDC(Brushless DC) motor has been increasingly applied to home appliance and the study of BLDC motor drive is extensively processing, so it is necessary to investigate the characteristic of the BLDC motor drive. In this paper, we proposed the modeling of interior permanent - magnet BLDC motor drive. The state model of motor and the model of inverter using pulse width modulation are included. The modeling is verified by the experimental results.

  • PDF

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • 김태성;안성찬;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.416-422
    • /
    • 2001
  • The BLDC(Brushless DC) Motor is characterized by linear torque to current and speed to voltage. It has low acoustic noise and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. However, when armature current is commutated, the current ripple is generated by the motor inductance components in stator windings and back-EMF. This current ripple caused to torque ripple. Therefore, it is difficult to apply the BLDC motor to a precision servo drive system. In this paper, a new current control algorithm using fourier series coefficients is proposed. This proposed algorithm can minimize torque ripple due to the phase current commutation of BLDC motor. Simulation and Experimental results prove the effectiveness at the Proposed algorithm through comparison with the conventional unipolar PWM method.

  • PDF

Design and Implementation of Oil Pump Control Systems Driven by a Brushless DC Electric Motor (BLDC 모터로 구동되는 오일 펌프 제어 시스템의 설계 및 구현)

  • Kwak, Seong-Woo;Kim, Hyung-Soo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • In this paper, we address the problem of designing and implementing an oil pump control system driven by a brushless DC (BLDC) motor. The proposed oil pump plays the role of providing fuel to the engine clutch and transmission of hybrid vehicles. Main consideration is given to enhancing response feature and accuracy of the oil pump by simplifying the controller that is driven by a BLDC motor under PWM voltage control, which is a standard control method for BLDC motors. The proposed control scheme also helps to increase efficiency and reliability of the oil pump system. To validate the performance of the proposed system, we conduct experiments on BLDC motor speed control and oil pump operations.

State Transition Fault Diagnosis in Brushless DC Motor based on Fuzzy (퍼지를 이용한 BLDC 모터의 상태천이 고장진단)

  • Baek, Gyeong-Dong;Kim, Yeon-Tae;Kim, Seong-Sin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.205-209
    • /
    • 2007
  • 생산 현장에서 기기의 운영과 관리는 제품의 품질 및 기업의 수익성과 직결된다. 그러나 정상적인 작동을 하고 있는 시스템에서 고장의 시점과 고장의 종류를 예측하기 곤란하며 따라서 잔여 가동 시간이 얼마인지도 예측하기 힘들다. 본 논문에서는 산업용 기계, 공정과 의료기기 등 신뢰성이 요구되는 Brushless DC 모터의 상태 변화의 추이를 관찰하여 진단의 특징점으로 사용한다. 본 논문에서 제안한 상태천이 모텔은 고장의 시점과 고장의 종류를 예측할 수 있으며 유지보수의사결정에 도움을 줄 수 있다.

  • PDF

Analysis of Vibration due to Magnetic Exciting Force in the Brushless DC Motor (브러시리스 직류 전동기의 자기 가진력에 의한 진동 해석)

  • Han, Ki-Jin;Cho, Han-Sam;Jung, Hyun-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, the general research on the analysis of the vibration due to magnetic exciting force in the small brushless DC(BLDC) motor, which is used in the Digital Versatile Disk(DVD) ROM driving system, is performed. The first part of the study is the analysis of the magnetic exciting force in the air gap region. As a verification of the exciting force by numerical analysis, the magnetic exciting force distribution in the air gap region is computed by using Reluctance Network Method(RNM). In addition, the effect of the eccentricity on the magnetic exciting force is discussed. The other part of the research is the structural analysis of the rotor structure of the BLDC motor. The matural mode analysis of the rotor structure is performed, and the vibration response due to magnetic exciting force is found. As a result of the procedures, the basic estimation of the effect of the magnetic exciting force on the vibration of BLDC motor is suggested.

  • PDF

Development of a micro BLDC Motor and Sensorless Drive (초소형 BLDC모터 및 센서리스 구동모듈 개발)

  • Choi, J.H.;Jung, I.S.;Kim, J.H.;Hur, J.;Sung, H.G.;Cho, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1444-1446
    • /
    • 2005
  • Recently most machineries have been small size and mobile type. And human body insertion type endoscope and micro robot technology has been developed. Then the motors used in this field are developed in micro size such as about 2mm in diameter. The structure of this motor is similar to a general brushless DC(BLDC) motor but because of small size there is no position sensor such as hall sensor. In this paper, a design and fabrication result of an ultra-small brushless DC motor is presented. This motor is designed to 3-phase coreless winding and operated with sensor-less type driver. Test results confirmed the feasibility of the proposed motor drive system design.

  • PDF

Simple Lead Angle Adjustment Method for Brushless DC Motors

  • Gu, Bon-Gwan;Choi, Jun-Hyuk;Jung, In-Soung
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.541-548
    • /
    • 2014
  • This paper presents a simple lead angle adjustment method for brushless DC motors. The proposed method is based on the motor current dynamics analysis during the current commutation interval. With the proposed scheme, the phase current and phase back-EMF voltage are in phase and the BLDC motor and drive system have a high efficiency induced by the reduced copper and conduction losses. Experimental results are shown to validate the proposed method.

PSO-Based Optimal PI(D) Controller Design for Brushless DC Motor Speed Control with Back EMF Detection

  • Kiree, Chookiat;Kumpanya, Danupon;Tunyasrirut, Satean;Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.715-723
    • /
    • 2016
  • This paper proposes a design of optimal PI(D) controller for brushless DC (BLDC) motor speed control by the particle swarm optimization (PSO), one of the powerful metaheuristic optimization search techniques. The proposed control system is implemented on the TMS320F28335 DSP board interfacing to MATLAB/SIMULINK. With Back EMF detection, the proposed system is considered as a class of sensorless control. This scheme leads to the speed adjustment of the BLDC motor by PWM. In this work, the BLDC motor of 100 watt is conducted to investigate the control performance. As results, it was found that the speed response of BLDC motor can be regulated at the operating speed of 800 and 1200 rpm in both no load and full load conditions. Very satisfactory responses of the BLDC system can be successfully achieved by the proposed control structure and PSO-based design approach.

Improved Power Quality IHQRR-BIFRED Converter Fed BLDC Motor Drive

  • Singh, Bhim;Bist, Vashist
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.256-263
    • /
    • 2013
  • This paper presents an IHQRR (Integrated High Quality Rectifier Regulator) BIFRED (Boost Integrated Flyback Rectifier Energy Storage DC-DC) converter fed BLDC (Brushless DC) motor drive. A reduced sensor topology is derived by utilizing a BIFRED converter to operate in a dual DCM (Discontinuous Conduction Mode) thus utilizing a voltage follower approach for the PFC (Power Factor Correction) and voltage control. A new approach for speed control is proposed using a single voltage sensor. The speed of the BLDC motor drive is controlled by varying the DC link voltage of the front end converter. Moreover, fundamental frequency switching of the VSI's (Voltage Source Inverter) switches is used for the electronic commutation of the BLDC motor which reduces the switching losses in the VSI. The proposed drive is designed for a wide range of speed control with an improved power quality at the AC mains which falls within the recommended limits imposed by international power quality standards such as IEC 61000-3-2.