• Title/Summary/Keyword: BIPV Window

Search Result 29, Processing Time 0.023 seconds

Toward Net-Zero Energy Retrofitting: Building-Integrated Photovoltaic Curtainwalls

  • Kim, Kyoung Hee;Im, Ok-Kyun
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • With the rapid urbanization and growing energy use intensity in the built environment, the glazed curtainwall has become ever more important in the architectural practice and environmental stewardship. Besides its energy efficiency roles, window has been an important transparent component for daylight penetration and a view-out for occupant satisfaction. In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV) curtainwall as a sustainable alternative to conventional window systems. Design variables such as building orientations, climate zones, energy attributes of BIPV curtainwalls, and glazed area were studied, to minimize energy consumption and discomfort hours for three cities representing hot (Miami, FL), mixed (Charlotte, NC), and cold (Minneapolis, MN). Parametric analysis and Pareto solutions are presented to provide a comprehensive explanation of the correlation between design variables and performance objectives for net-zero energy retrofitting applications.

Performance Evaluation of the Wall-Type BIPV System Based on the Energy Consumption Unit - A Study for University Lecture Building - (에너지 소비 원단위를 기초로 한 벽면부착형 BIPV 시스템의 성능평가에 관한 연구 - 대학교 강의동 건축물을 대상으로 -)

  • Lee, Kang-Guk;Seo, Won-Duck;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.6
    • /
    • pp.25-32
    • /
    • 2011
  • The building integrated photovoltaic(BIPV) system has a double advantage that it reduces costs for exterior materials and PV panels. It allows the construction of a low-energy building without the need for the additional installation space. At the construction planning stage, however, it requires sufficient evaluation on the efficiency and performance. This study was performed to promote the distribution of photovoltaic power generation system by estimating the potential photovoltaic power generation capacity of the BIPV system installed on the university lecture building and by evaluating the characteristics and performances of window, spandrel and combined attachment types via the simulation of generation capacity per unit area.

  • PDF

Self-powered Smart Window Technologies Using Photovoltaics (태양전지를 이용한 스마트 윈도우 기술 동향)

  • Lee, Kyu-Sung;Lim, Jung Wook;Kang, Mangu;Kim, Kyung Hyun;Ryu, Hojun
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.36-47
    • /
    • 2019
  • Smart window technology has become a major component of smart buildings, leading to energy savings and enhanced functionality. Smart windows work like curtains or blind screens, blocking external light sources. Smart window components employ electrochromic or photochromic materials that can selectively block sunlight when electricity is applied. The installation of low-E glass and building-integrated photovoltaics (BIPV) is being encouraged in accordance with the policy on saving building energy. To incorporate BIPV into smart windows, the transparency and colors of transparent photovoltaics must be optimized. The power sources required to operate these smart windows take advantage of the transparent color of the solar cells, which also facilitates aesthetics. Self-powered smart windows that combine electrochromic or photochromic screens with transparent solar cells suggest a promising convergent technology.

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

Performance Evaluation of a-Si BIPV System According to Transmittance Variation (투과율에 따른 비정질실리콘 BIPV 시스템 효율 평가)

  • Cha, Kwangseok;Lee, Byoungdoo;Kim, Kangsuk;Shin, Seungchul;Lee, Daewoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.60.1-60.1
    • /
    • 2010
  • 공동주택에서 태양광발전(PV)을 통한 세대 전기에너지 이용은 모듈 설치 면적의 제약으로 인해 전 세대를 대상으로 활용하기에 현실적으로 어려움이 있다. 특히 남향이나 남동, 남서향으로 위치한 거실 창호를 활용하는 경우에도 결정질 실리콘(crystalline silicon) 태양전지 셀로 인한 실내 음영문제 등으로 건물통합형 태양광발전(BIPV) 시스템의 가시성을 확보하는데 한계가 있다. 따라서 이런 문제점을 극복하고자 투광형 비정질실리콘(amorphous silicon) 태양전지를 이용한 발코니창호/커튼월 BIPV 시스템을 구축하고, 테스트베드를 통한 적용성 평가 검증을 수행하였다. 테스트베드는 KCC 중앙연구소 1층 외부 측창에 결정질 BIPV 모듈(A2PEAK 사(社), 최대 출력 210 Wp, W 2,000 mm ${\times}$ H 1,066 mm)과 10% 및 30% 투광형 비정질 BIPV 모듈(Sharp 사(社) See Through type, 최대 출력 135 Wp/123 Wp, W 1,930 mm ${\times}$ H 1,180 mm)을 각각 설치(남서 $30^{\circ}$, 수직 $90^{\circ}$)하여, 2009년 5월에서 8월 사이 4개월에 걸친 모니터링을 통해 실제 발전량 데이터를 확보, 시스템에 대한 분석을 진행하였다. 분석 결과, 설치용량당 일평균 발전량은 결정질형이 1.46 kWh/kWp, 10% 투광형은 1.10 kWh/kWp, 30% 투광형은 0.73 kWh/kWp을 나타내었다. 10% 투광형과 30% 투광형의 모듈 성능 차이는 크지 않으나 발전량에 있어서는 큰 차이를 보였고, 10% 투광형의 설치용량당 일평균 발전량은 경정질형의 75.2% 수준으로 투광형 비정질실리콘 BIPV 시스템의 창호 적용 가능성을 확인하였다. 특히 세대 거실 창호를 통한 가시성 확보는 기존 결정질 BIPV 창호의 단점을 개선하였다. 건자재 일체화로 구축된 가시성확보 BIPV시스템 창호는 단위 세대별 적용이 쉽고, 공동주택에서 PV 시스템의 설치면적을 극대화시키므로 향후 Zero Energy 공동주택 구축에도 활용성이 클 것으로 기대된다.

  • PDF

Parametric Analysis of Building Energy Impact of Semi-transparent PV (STPV의 건물 에너지 성능에 대한 파라메트릭 분석)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.35-42
    • /
    • 2018
  • Semi-transparent Photovoltaics (STPV) works as an exterior material replacing windows as well as functioning as a electricity generator. As a result, it also affects the building's heating, cooling and lighting loads. In this study, we used the concept of Net Electricity Benefit(NEB) to conduct a parametric analysis of building energy impact of STPV. The NEB of STPV is from $-1kWh/m^2$ to $6kWh/m^2$. Since NEB represents the amount of energy increase or decrease when STPV is applied compared to the standard window, a value of 0 or less means that the demand for building energy can be increased rather than applying a general window having high thermal performance and high visible light transmittance value. Therefore, it is necessary to perform a comprehensive performance evaluation considering both the performance evaluation based on the existing power generation performance and the influence on the building energy.

A Study on generation characteristics of building integrated Photovoltaic system (건물일체형 태양광발전 시스템의 발전성능 분석)

  • Park, Jae-Wan;Shin, U-Cheul;Kim, Dae-Gon;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.

A Study on Optimum of Performance Objectives of Passive House with Load Reduction elements (천공상태에 따른 박막 BIPV 창호의 온도 및 발전특성 실측연구)

  • Kim, Bit-Na;Yoon, Jong-Ho;Shin, U-Cheu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.171-176
    • /
    • 2012
  • This research on building Integrated Photovoltaic System replacing windows and doors with amorphous silicon thin film PV windows and doors installing same exact mount on Mock-up. The windows and doors should be installed in different angle and bearing so that we can analyse the amount of electricity from them. The objective of the research is to evaluate and investigate the relationship between factors(intensity of solar radiation, PV window surface temporature, incidence angle, and sky conditions) that affects performance of PV window and performance. The range and method of this research is to establish mornitoring system and analysis the date from the mornitoring system to evaluate the performance of PV windows that has thin film of solar battery. We should evaluate the insolation according to the position of PV window, output, and surface temperature according to months and seasons so that we can figure out the relationship between these. And we should investigate the relationship between performance and efficiency according to incidence angle and sky condition so that we can figure out the correlation between factors and performance.

  • PDF

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

A Study on the Power Performance Measurement of Transparent Thin-film PV Windows of BIPV Depending on the Inclined Angle (건물일체형 투명 PV복층창의 설치조건에 따른 단위출력당 발전특성 분석연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.55-60
    • /
    • 2008
  • This study is on the analysis of power output of transparent thin-film PV windows which are integrated into the building envelope instead of traditional windows. 3 installation angles of vertical, horizontal and $30^{\circ}C$ inclination are investigated. To measure power output of PV windows, full scale mock-up house was designed and constructed. The power performance of PV window system was analyzed for horizontal angle, declination angle and vertical angle according to incline angle. Monitoring data are gathered from November 2006 to August 2007 and statistical analysis is performed to analysis a characteristics of power performance of transparent PV windows. Results show that annual power output of PV window with horizontal angle is 844.4kWh/kWp/year, declination angle 1,060kWh/kWp/year and vertical angle 431.6 kWh/kWp/year.

  • PDF