• Title/Summary/Keyword: BIM Labor

Search Result 28, Processing Time 0.019 seconds

Knowledge Evolution in Construction Automation Research

  • Mun, Seong-Hwan;Kim, Taehoon;Lee, Ung-Kyun;Cho, Kyuman;Lim, Hyunsu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.577-584
    • /
    • 2020
  • Construction automation and robotics have been widely adopted in the construction industry as a promising solution to such issues like a shortage of skilled labor and the difficulties workers face in harsh working environments. The analysis of the knowledge structure and its evolution from the existing articles helps identify essential knowledge elements and possible future research directions. This study attempts to (1) construct keyword networks from the papers published in the International Symposium on Automation and Robotics in Construction (ISARC), (2) investigate how keywords and keyword communities are associated with each other, and (3) examine the changes in the crucial keywords over time. Through cluster analysis, 79 keywords were categorized into four groups (BIM, Building construction, Sensing, and GPS as representative keywords) with similar structural positions. Research trends show that research themes related to Infrastructure, Construction equipment, and 3D have consistently received a large amount of attention, regardless of geographical region. Research on as-built status model utilization through BIM and Laser scanning and improving Energy performance is taking place more frequently. In contrast, research studies related to problem-solving based on Neural networks are not as common as previously. This study provides useful insights into the construction automation field, at both the macro and micro levels.

Automation in Site Planning of Apartment Complex - Through Rhino Grasshopper's Parametric Modeling and Optimization - (아파트 최적 배치 자동화 - Rhino Grasshopper를 활용한 parametric model의 최적화를 중심으로 -)

  • Sung, Woo-Jae;Jeong, Yo-Han
    • Journal of KIBIM
    • /
    • v.10 no.3
    • /
    • pp.22-32
    • /
    • 2020
  • Apartment building site planning is one of time consuming and labor-intensive tasks in architectural design field, due to its complexity in zoning regulations, building codes, local restrictions, and site-specific conditions. In other words, the process can be seen as a very complicated mathematical function with layers of variables and parameters, which ironically can be automated using computational methods on parametric tools. In this paper, a practical method of automating site planning of an apartment complex has been proposed by utilizing parametric approaches in Rhino 3D and Grasshopper. Two primary parameters, building heights and positions, determine the efficacy of building layouts under all regulatory standards, thus testing out numerous combinations of the two will produce some successful layout alternatives. For this, equation solver has been used for iterating the parametric model to sort out meaningful results among others. It also has been proven that the proposed process significantly reduced the time in site planning down to less than an hour on most cases, and many successful alternatives could be obtained by using multiple computers. Post evaluation processes such as day light and view shed analysis helped sort out the best performing ones out of functioning alternatives.

Association between Construction Management Areas and Automation Technologies based on Correlation Analysis (상관관계 분석을 통한 건설관리 분야와 자동화기술간 연관성 분석)

  • Mun, Seong-Hwan;Cho, Kyu-Man;Kim, Tae-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.191-192
    • /
    • 2019
  • The construction industry is in the process of changing from the existing labor-intensive production system to a construction automation system using advanced information and communication technologies. Accordingly, in order to identify key research areas and utilization technologies in the field of construction automation, this study collected the latest 17 years (2000-2016) of papers published in International Symposium on Automation and Robotics in Construction (ISARC) and conducted a correlation analysis between the construction management areas and automation technologies based on the keyword frequency. As a result, the BIM, WSN, and Augmented reality were extracted as the technology keywords with high correlation with various areas of construction management.

  • PDF

Exploring the Combined Use of LiDAR and Augmented Reality for Enhanced Vertical and Horizontal Measurements of Structural Frames (골조 수직, 수평 측정작업 시 LiDAR 및 AR 기술 적용방안 제시)

  • Park, Inae;Kim, Sangyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.273-284
    • /
    • 2023
  • This study is centered on the combined use of LiDAR(Light Detection and Ranging) and AR(Augmented Reality) technologies during vertical and horizontal frame measurements in construction projects. The intention is to enhance the quality control procedure, elevate accuracy, and curtail manual labor along with time expenditure. Present methods for accuracy inspection in frame construction often grapple with reliability concerns due to subjective interpretation and the scope for human error. This research recommends the application of LiDAR and AR technologies to counter these issues and augment the efficiency of the inspection process, along with facilitating the dissemination of results. The suggested technique involves the collection of 3D point cloud data of the frame utilizing LiDAR and leveraging this data for checks on construction accuracy. Furthermore, the inspection outcomes are fed into a BIM (Building Information Modeling) model, and the results are visualized via AR. Upon juxtaposing this methodology with the current approach, it is evident that it offers benefits in terms of objective inspection, speed, precise result sharing, and potential enhancements to the overall quality and productivity of construction projects.

A Study on the Cost Estimating Method based on Spatial Unit Focused on Improving Limitation Caused by Lack of Spatial Information of the Cost Based on Work Type (공간단위 공사비 산정방법에 관한 연구 - 공종별 공사비의 공간정보 부재로 인한 한계점 개선을 중심으로 -)

  • Lee, Ki-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.131-139
    • /
    • 2011
  • In this Study, the Cost of Public Facility Construction in the VE Cost Model, and the Progress of the Construction Site Management, and Cost due to the Lack of Cpatial Information in Dispute Cost Work Type Recognize the limits of Historical Information, and to Overcome the Perception of Cost and Space Systems Unit In the Process of Transition that Began Seeking Ways to Improve Through this Study, Different Parts of the Proposed Area of Construction Work Unit System, the Core of Calculating Hourly and Detailed Engineering Information and Cost Information Generated Extension to Configure the Construction Unit in Every Space, Every Work Unit System, All Materials That Make Up Work Unit System, Unit Labor Costs, And All of the Configuration Items Enables Precise And Multidimensional Understanding is That.

Workspace Generation and Interference Optimization Algorithm by Work-type using 3D Model Object in a Construction Project (건설프로젝트의 작업유형별 3차원 작업공간 생성 및 간섭 최적화 방안)

  • Kim, HyeonSeung;Moon, HyounSeok;Kim, ChangHak;Kang, LeenSeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1911-1918
    • /
    • 2014
  • The increase of input resources, such as labor and equipment, in a construction project causes workspace interference between activities and it influences on the productivity and quality of construction activities. To solve this problem, many studies related to the workspace interference have been performed, however they verified the workspace concerning with only the geometric location of activities or generated the shape of workspace by a whole object concept not separated units of detailed operations. It is difficult for project manager to reasonably analyze the workspace conflict, because the size of workspace cannot reflect the characteristics of an activity and input time of a resource. This paper presents a methodology that can generate three-dimensional models in order to optimize the workspace shape and size by considering with the characteristics of each activity and input time of each resource. The suggested method can be used for the active BIM system that optimizes the workspace conflict without additional construction duration and for the searching algorithm of optimized moving path for construction equipment.

Adding AGC Case Studies to the Educator's Tool Chest

  • Schaufelberger, John;Rybkowski, Zofia K.;Clevenger, Caroline
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1226-1236
    • /
    • 2022
  • Because students majoring in construction-related fields must develop a broad repository of knowledge and skills, effective transferal of these is the primary focus of most academic programs. While inculcation of this body of knowledge is certainly critical, actual construction projects are complicated ventures that involve levels of risk and uncertainty, such as resistant neighboring communities, unforeseen weather conditions, escalating material costs, labor shortages and strikes, accidents on jobsites, challenges with emerging forms of technology, etc. Learning how to develop a level of discernment about potential ways to handle such uncertainty often takes years of costly trial-and-error in the proverbial "school of hard knocks." There is therefore a need to proactively expedite the development of a sharpened intuition when making decisions. The AGC Education and Research Foundation case study committee was formed to address this need. Since its inception in 2011, 14 freely downloadable case studies have thus far been jointly developed by an academics and industry practitioners to help educators elicit varied responses from students about potential ways to respond when facing an actual project dilemma. AGC case studies are typically designed to focus on a particular concern and topics have thus far included: ethics, site logistics planning, financial management, prefabrication and modularization, safety, lean practices, preconstruction planning, subcontractor management, collaborative teamwork, sustainable construction, mobile technology, and building information modeling (BIM). This session will include an overview of the history and intent of the AGC case study program, as well as lively interactive demonstrations and discussions on how case studies can be used both by educators within a typical academic setting, as well as by industry practitioners seeking a novel tool for their in-house training programs.

  • PDF

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF