• Title/Summary/Keyword: BIM Implementation

Search Result 94, Processing Time 0.021 seconds

Understanding of the Sung-Rye-Moon Roof Structure and implementation of the traditional Bracket-set Design Modules for BIM tools

  • Park, Soo-Hoon;Ahn, Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1613-1620
    • /
    • 2011
  • Roof structure of the traditional buildings in the Northeast Asia region including Korea contains the most complicated and crucial components of the building and therefore the issues such as cost down, productivity and the attempt to combine the traditional building methodology with contemporary building technology turn out to be vital to the survival of the old yet disconnected traditional building industry. One of the distinctive modern building technologies is handling life-cycle building information by constructing virtual buildings using BIM, building information modeling tools. In this paper we follow a procedure to implement some of the design modules to be applied in BIM tools which are platforms for constructing virtual building models. We focus on Gong-po components namely the bracket-sets which are the essential part that connects the middle parts to the top parts (the roof structure) which are considered to be the most elaborate parts of the traditional buildings. The target building to work with in this paper is the Sung-Rye-Moon which has special cultural and social meanings nowadays and we tested our understanding and the design modules such as the bracket-sets by constructing a virtual building model of Sung-Rye-Moon.

Implementation of 3D Object Model considering Recycle-Design of PSC Box Girder (PSC 박스 거더의 Recycle-Design을 고려한 3차원 객체 모델 구현)

  • Cho, Sung-Hoon;Park, Jae-Guen;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.325-330
    • /
    • 2010
  • In the fields of design within civil engineering, BIM based Utilization of 3D object model is still far from commercialization. In this paper, BIM based 3D object model is composed for PSC box girder, super structure of railway bridge. The basic unit of the model is part model. The part model is the minimum unit model. And it has hierarchy to reflect the characteristics of structures. Change orders of structural designer must be reflected quickly in the 3D object model. Repetitive change orders are occurred in actual construction process. To prepare that, we classified design variables to parameters. Change orders of structural designer can be reflected quickly in the 3D object model because those parameters are related with information of 3D object model. In this paper, we studied various benefits of BIM based design method with 3D object model in the fields of design within civil engineering, and proposed the efficient application method of 3D object model for PSC box girder.

BIM-based Design Automation Tool and Digital Twin Interoperability - Case of the Next Generation Noise Barrier Tunnel - (BIM 기반 설계 자동화 도구와 디지털 트윈의 상호운용성 - 차세대 방음터널의 사례를 중심으로 -)

  • Yang, Seung-Won;Kim, Seong-Jun;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 2021
  • Digital twins between "BIM Digital Model-Physical Prototype Model" will be built for Noise Barrier tunnel(NBT) that meet the definition of N.G smart city facilities derived from previous studies to build a data flow that connects data at each stage of design, construction, and operation. In this process, BIM design automation tools are created and utilized, and consistent transmission of member and attribute data is performed by converting them into IFC format. Through this, the purpose is to improve the labor-intensive environment required from the design stage of the NBT and to consistently maintain the information required for subsequent production and construction. This includes achieving changes in the construction industry based on digital transformation by unifying various data formats used differently for each industry from design to operation. In addition, it demonstrates that information exchange in the maintenance and management stages is possible based on the data exchange of the established digital twin and aims to improve the existing labor-intensive environment and expand operability between digital and physical information. As suggested in previous studies, the implementation of digital twins in these N.G smart city facilities includes the possibility of building an environment that adds to the possibility of high value-added product platforms as well as the function of big data platforms targeting existing smart cities.

A Framework Development for Sketched Data-Driven Building Information Model Creation to Support Efficient Space Configuration and Building Performance Analysis (효율적 공간 형상화 및 건물성능분석을 위한 스케치 정보 기반 BIM 모델 자동생성 프레임워크 개발)

  • Kong, ByungChan;Jeong, WoonSeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.50-61
    • /
    • 2024
  • The market for compact houses is growing due to the demand for floor plans prioritizing user needs. However, clients often have difficulty communicating their spatial requirements to professionals including architects because they lack the means to provide evidence, such as spatial configurations or cost estimates. This research aims to create a framework that can translate sketched data-driven spatial requirements into 3D building components in BIM models to facilitate spatial understanding and provide building performance analysis to aid in budgeting in the early design phase. The research process includes developing a process model, implementing, and validating the framework. The process model describes the data flow within the framework and identifies the required functionality. Implementation involves creating systems and user interfaces to integrate various systems. The validation verifies that the framework can automatically convert sketched space requirements into walls, floors, and roofs in a BIM model. The framework can also automatically calculate material and energy costs based on the BIM model. The developed frame enables clients to efficiently create 3D building components based on the sketched data and facilitates users to understand the space and analyze the building performance through the created BIM models.

A BIM-based model for constructability assessment of conceptual design

  • Fadoul, Abdelaziz;Tizani, Walid;Koch, Christian
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.367-384
    • /
    • 2018
  • The consideration of constructability issues at the design stage can lead to improved construction performance with smooth project delivery and savings in time and money. Empirical studies demonstrate the value obtained by integrating construction knowledge with the building design process, and its benefits for owners, contractors and designers. However, it is still a challenge to implement the concept into current design practice. There is a need for a decision support tool to aid designers in reviewing their design constructability, deploying current technological tools, such as BIM. Such tools are beneficial at the conceptual design stage when there is a room to improve the design significantly with less incurred cost. This research investigates how current process- and object-oriented models can be used to assess design constructability. It proposes a BIM-based model using embedded information within the design environment to conduct the assessment. The modelling framework is demonstrated in four key parts; namely, the conceptual design model, the constructability assessment model, the assessment process model and the decision-making phase. Each is associated with a set of components and functions that contribute towards the targeted constructability assessment outcomes. The proposed framework is the first to combine a numerical assessment system and a rule-based system, allowing for both quantitative and qualitative approaches. The modelling framework and its implementation through a prototype are described in this paper. It is believed that this framework is the first to enable users to transfer their construction knowledge and experience directly into a design platform linked to BIM models. The assessment criteria can be customised by the users who can reflect their own constructability preferences into various specialised profiles that can be added to the constructability assessment model. It also allows for the integration of the assessment process with the design phase, facilitating the optimisation of constructability performance from the early design stage.

A Framework of Building Knowledge Representation for Sustainability Rating in BIM

  • Shahaboddin Hashemi Toroghi;Tang-Hung. Nguyen;Jin-Lee. Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.437-443
    • /
    • 2013
  • Recently, sustainable building design, a growing field within architectural design, has been emerged in the construction industry as the practice of designing, constructing, and operating facilities in such a manner that their environmental impact, which has become a great concern of construction professionals, can be minimized. A number of different green rating systems have been developed to help assess that a building project is designed and built using strategies intended to minimize or eliminate its impact on the environment. In the United States, the widely accepted national standards for sustainable building design are known as the LEED (Leadership in Energy and Environmental Design) Green Building Rating System. The assessment of sustainability using the LEED green rating system is a challenging and time-consuming work due to its complicated process. In effect, the LEED green rating system awards points for satisfying specified green building criteria into five major categories: sustainable sites, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality; and sustainability of a project is rated by accumulating scores (100 points maximum) from these five major categories. The sustainability rating process could be accelerated and facilitated by using computer technology such as BIM (Building Information Modeling), an innovative new approach to building design, engineering, and construction management that has been widely used in the construction industry. BIM is defined as a model-based technology linked with a database of project information, which can be accessed, manipulated, and retrieved for construction estimating, scheduling, project management, as well as sustainability rating. This paper will present a framework representing the building knowledge contained in the LEED green building criteria. The proposed building knowledge framework will be implemented into a BIM platform (e.g. Autodesk Revit Architecture) in which sustainability rating of a building design can be automatically performed. The development of the automated sustainability rating system and the results of its implementation will be discussed.

  • PDF

A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces (건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

Identification of Claim Elements for Design Build Projects using FMEA Method (FMEA 기법을 이용한 설계시공일괄방식 주요 클레임 요인 도출)

  • Yoon, Seokmin;Hyun, Changtaek;Han, Sangwon;Cha, Yongwoon
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.26-33
    • /
    • 2015
  • Design-build projects were devised to enhance the design technologies of the domestic construction industry and the efficiency of public works, contributing greatly to the development of construction technologies. However, as various stages of the process, such as formulation of basic plans and design documents, and deliberations proceed, claims, including changes in the requirements of clients, and design changes occur. These claims result in the delay in construction and an increase in construction costs. In this regard, this study attempted to identify main claims that delay construction and increase the costs of design-build projects, prevent claims in the future, and improve the efficiency of project implementation.

Sustainable Transportation Decision-Making Process with the Implementation of a Raster-Based SDSS - A Texas Urban Triangle (TUT) Case -

  • Kim, Hwan-Yong
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.1-7
    • /
    • 2017
  • Urban planning involves many different disciplines. In order for the related stakeholders to have better understanding and acceptable outcomes, planners are required to present a methodology that would properly reflect people's interest. In order to justify the demand and distribute people's interest, planners actively utilized the suitability analysis. Accordingly, a suitability analysis to find the optimal route for high-speed rail was performed in this paper. With ArcGIS and geographic data sets, simple map algebra could be used. The final product of this research was a map indicating the suitable routes for high-speed rail using the shortest path analysis.

Development of BIM-based 3D Modeling Instruction Materials and its Application Analysis for Professional Drafting Subject of Specialized Vocational High School (특성화고 전문제도 과목을 위한 BIM 기반 3D 주택설계 수업자료 개발 및 적용)

  • Kwon, Se-Jeong;Yoo, Hyun-Seok
    • 대한공업교육학회지
    • /
    • v.43 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • As the BIM designing technology has been applied recently in the construction field, architectural design education in the field of work and university has been changing to 3D modeling. Nevertheless, architectural design & drafting education in the construction specialized vocational high school is not responding appropriately to change. Despite the fact that students need to have 3D modeling design ability, there is a very lack of 3D housing design instructional material that can satisfy the change. The purpose of this study is to develop BIM-based 3D modeling instruction material and apply to analyze effect on interest and task performance ability on Housing Design. The 3D modeling instruction material used in this study was developed through four stages of preparation, development, implementation and evaluation according to the PDIE model procedure. Also, the experimental design model for hypothesis testing was used nonequivalent control group pretest-posttest design. Based on the experimental design model, BIM-based 3D modeling instruction material was performed in the experimental group and 2D CAD-based standard instruction material was taught in the control group. Experimental treatment was conducted on the students of construction specialized vocatinonal high school, and applied to the subject of Professional Drafting in the 12 hours. Before and after the experimental treatment, the interest and task performance ability on Housing Design were tested. Based on the test results, we analyzed the effects of the 3D modeling instruction material through the independent samples t-test. The results of the study are as follows. First, BIM-based 3D modeling instruction material was developed of 'Housing Design & Drafting' unit on the subject of Professional Drafting in construction specialized vocational high school. Second, the application of 3D modeling instruction material has shown to be effective in improving students' interest. Third, the application of 3D modeling instruction material has shown to be effective in improving students' task performance ability on Housing Design.