• Title/Summary/Keyword: BIM Adoption

Search Result 66, Processing Time 0.024 seconds

Development of BIM Utilization Level Evaluation Model in Construction Management Company (건설사업관리기업의 BIM 활용수준 평가 모형 개발)

  • Jeong, Seo-Hee;Kim, Gwang-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.4
    • /
    • pp.24-33
    • /
    • 2024
  • Recently, as smart construction has become more active, construction companys are evaluating their smart construction capabilities in order to transform into smart construction companies. However, the revitalization of smart construction doesn't only apply to construction companies, the level of utilization of all participants, including owners, designers, construction project managers, and construction company, must be improved. Therefore, this study aims to present a model that evaluate the building information modeling (BIM) utilization level for measuring the BIM utilization level of construction management companies in executing construction project management. In this study, an AHP questionnaire survey targeting BIM practitioners to calculate the weight of each BIM utilization item and score it to construct evaluation model and evaluate it by applying it to construction management companies are conducted. As a result of the evaluation using model, there were differences between companies in the number of BIM users, and in the qualitative evaluation, it is mainly used for interference review, constructability review, and design change management. Therefore, in order to revitalize BIM, it is believed that it is necessary to strengthen BIM utilization ability through separate training for construction manager (CMr) and to present clear utilization standards and scope of work for BIM utilization in performing construction management tasks. Consequently, evaluating more construction management companies using the model presented in this study will result in the transition of CM companies to smart construction and revitalization of BIM adoption.

Development of BIM based Maintenance Management Prototype System for Wastewater Treatment Plant (BIM 기반 하수처리시설 유지관리 프로토타입 시스템 개발)

  • Um, Dong-Yong;Choi, Jae-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1901-1910
    • /
    • 2014
  • Current domestic and overseas BIM practice and research efforts show very few examples that design and construction BIM data could be successfully used for efficient operation and maintenance (O&M) of infrastructure in particular. This study takes public wastewater treatment plant requiring an enhancement of operation and maintenance capability into account to develop a prototype BIM-based maintenance management system. The system is designed and implemented following a typical system development procedure and validated by the system outputs per four scenarios being considered to be main maintenance activities: The research results are expected to contribute to the upgrade of current wastewater treatment plant maintenance level, which is more demanded as water-related regulation and policy direction changes to region-based large scale O&M and asset management adoption, and overseas market participation.

A Study on Automated Reinforcement Detailing for Reinforced Concrete Structures Using BIM (BIM 기반 철근콘크리트 구조물의 자동 배근 모델 생성)

  • Park, U-Yeol;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Recent advancements in Building Information Modeling(BIM) have significantly impacted the construction industry, driving competitiveness and innovation. However, rebar construction, a critical component influencing project quality and cost, has lagged behind in BIM adoption. Traditional methods relying heavily on 2D drawings for rebar detailing have hindered efficiency and introduced potential errors. This paper presents a novel system designed to automate the detailed modeling of rebar, thereby promoting BIM integration within rebar construction and optimizing construction management processes. The system leverages confirmed structural drawings from the post-structural design phase to automatically generate intricate rebar models for columns and beams. To ensure adherence to domestic structural design standards, the system is developed using C# programming language and the Revit API. By automating rebar modeling, this system aims to minimize human error, reduce labor-intensive tasks, and enhance overall rebar construction efficiency through the effective utilization of generated rebar model data.

A study on Analysis of Convergence Trends in Global BIM Market Using Patent Information (BIM 기술 융·복합 수준 분석을 위한 특허 정보 활용 방안)

  • Kim, Taewon;Lee, Jaeho;Lee, Yoonsun;Kim, Jaejun;Lee, Taisik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.95-104
    • /
    • 2017
  • Recently, patent information related to building information modeling (BIM) has been increasing owing to BIM adoption within the construction sector. However, only a few research studies have focused on identifying trends in the domestic and foreign BIM technology based on comprehensive and objective data. Therefore, this study aims to analyze technical competitiveness in the global BIM market using patent information. The patent information is compiled from WIPSON and consists of 73 South Korea, 59 USA, 206 China, and 31 Japan applications. Based on patent information, this study objectively observes domestic and foreign technological BIM trends. As a result of the technology entry analysis by the year, starting from physics (G section) to electricity (H section), the performing operations (B section), and the fixed structure (E section) has been expanded gradually. According to the portfolio analysis, the BIM patent is currently in its early stage of development. Through this research, utilizing patents as a basis for future development will be expected to consult with the differentiation of strategy and setting of direction.

A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization (BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구)

  • Hyun-Chul Joo;Ju-Hyeong Lee;Jong-Won Lim;Jae-Hee Lee;Leen-Seok Kang
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.145-155
    • /
    • 2023
  • Recently, with the widespread adoption of Building Information Modeling (BIM) technology in the construction industry, various object detection algorithms have been used to verify errors between 3D models and actual construction elements. Since the characteristics of objects vary depending on the type of construction facility, such as buildings, bridges, and tunnels, appropriate methods for object detection technology need to be employed. Additionally, for object detection, initial object images are required, and to obtain these, various methods, such as drones and smartphones, can be used for image acquisition. The study uses a 360° camera optimized for internal tunnel imaging to capture initial images of the tunnel structures of railway and road facilities. Various object detection methodologies including the YOLO, SSD, and R-CNN algorithms are applied to detect actual objects from the captured images. And the Faster R-CNN algorithm had a higher recognition rate and mAP value than the SSD and YOLO v5 algorithms, and the difference between the minimum and maximum values of the recognition rates was small, showing equal detection ability. Considering the increasing adoption of BIM in current railway and road construction projects, this research highlights the potential utilization of 360° cameras and object detection methodologies for tunnel facility sections, aiming to expand their application in maintenance.

Development of the IFC based IDF Converter for Energy Performance Assessment in the Early Design Phase (초기 설계단계 에너지 성능평가를 위한 IFC 기반 IDF 변환기 개발)

  • Kim, In-Han;Kim, Ji-Eun;Choi, Jung-Sik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.146-155
    • /
    • 2011
  • As the seriousness of environmental pollution being on a rise, a low carbon and environment-friendly design for energy efficiency has been issued. With respect to energy in the construction industry, an adoption of BIM which is possible for the various energy performance assessments in the early design phase has been actively working on. In the most cases of energy performance assessment, the data compatibility from the lack of standard software and format became a problem and the improvement for data compatibility system has been needed. This study is to develop the IFC based IDF converter as a middleware which connects between BIM software and energy analysis software. For the building energy performance assessment, Energy Plus and IFC are selected for the standard energy analysis software and its file format. Parameters are organized by steps and the integrated material library is built so it is trying to reduce the existing problem of energy software interface as much as possible. The development of IDF Converter will promote the spread of related fields with increasing the BIM standard and the utilization of energy performance assessment.

Development of Parametric BIM Libraries for Civil Structures using National 2D Standard Drawings (국가 표준도를 이용한 토목 구조물 BIM 파라메트릭 라이브러리 구축에 관한 연구)

  • Kim, Cheong-Woon;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.128-138
    • /
    • 2014
  • Development of infrastructure component libraries is a critical requirement for the accelerated adoption of BIM in the civil engineering sector. Libraries reduce the time for BIM model creation, allows accurate quantity take offs, and shared use of standard models in a project. However, such libraries are currently in very short supply in the domestic infrastructure domain. This research introduces library components for retaining walls and box culverts generated from 2D standard drawings made publicly available by MOLIT. Commercial BIM software was used to create the concrete geometry and rebar, and dimensional/volumetric parameters were defined to maximize the reuse and generality of the libraries. Use of the these libraries in a project context demonstrates that they allow accurate and quick quantity take offs, and easier management of geometric information through the use of a single library as to numerous 2D drawings. It also demonstrates the easy modification of the geometries of the components if and when they need to changed. However, the application also showed that some of the rebar components (stirrups and length wise rebars) do not get properly updated when concrete geometries are changed, demonstrating the limits of current software applications. The research provides evidence of the many advantages of using BIM libraries in the civil engineering, thus providing the incentive for further development of standard libraries and promoting the use of BIM in infrastructure projects.

A Study on the Improvement of 3D Slope Modeling for BIM Designing Site Construction (택지조성공사 BIM을 위한 비탈면 3차원 모델링 효율화 방안에 관한 연구)

  • Kwon, Yongkyu;Ha, Dahyun;Kim, Jeonghwan;Seo, Joonwon;Shim, Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.4
    • /
    • pp.29-40
    • /
    • 2021
  • Recently, interest in Building Information Modeling (BIM) has increased globally, and 3D modeling is a start for the application of BIM at construction sites. However, while many studies have been conducted on the efficiency of 3D modeling focused on civil facilities, there is a lack of research on the earthwork BIM. In particular, since 3D slope often has complex shapes depending on the ground models, the efficiency method for 3D slope are needed. This study analyzed the interfaces and procedures of other software to find out what functions users need. Then the functions to enter intervals between 3D faces, select multiple ground models, and improve the interface are reflected on the developed system and is able to efficiently perform modeling with only five steps, and reduce the number of clicks and inputs. As a result of conducting the test to verify the efficiency, using the developed system made skilled users complete modeling at least 1.8 times faster and unskilled people at least 2.4 times faster than using other software. This is expected to perform 3D slope modeling more efficiently, as well as to contribute to the activation of future BIM adoption for housing construction projects.

A Study on the Effects of BIM Adoption and Methods of Implementationin Landscape Architecture through an Analysis of Overseas Cases (해외사례 분석을 통한 조경분야에서의 BIM 도입효과 및 실행방법에 관한 연구)

  • Kim, Bok-Young;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.1
    • /
    • pp.52-62
    • /
    • 2017
  • Overseas landscape practices have already benefited from the awareness of BIM while landscape-related organizations are encouraging its use and the number of landscape projects using BIM is increasing. However, since BIM has not yet been introduced in the domestic field, this study investigated and analyzed overseas landscape projects and discussed the positive effects and implementation of BIM. For this purpose, landscape projects were selected to show three effects of BIM: improvement of design work efficiency, building of a platform for cooperation, and performance of topography design. These three projects were analyzed across four aspects of implementation methods: landscape information, 3D modeling, interoperability, and visualization uses of BIM. First, in terms of landscape information, a variety of building information was constructed in the form of 3D libraries or 2D CAD format from detailed landscape elements to infrastructure. Second, for 3D modeling, a landscape space including simple terrain and trees was modeled with Revit while elaborate and complex terrain was modeled with Maya, a professional 3D modeling tool. One integrated model was produced by periodically exchanging, reviewing, and finally combining each model from interdisciplinary fields. Third, interoperability of data from different fields was achieved through the unification of file formats, conversion of differing formats, or compliance with information standards. Lastly, visualized 3D models helped coordination among project partners, approval of design, and promotion through public media. Reviewing of the case studies shows that BIM functions as a process to improve work efficiency and interdisciplinary collaboration, rather than simply as a design tool. It has also verified that landscape architects could play an important role in integrated projects using BIM. Just as the introduction of BIM into the architecture, engineering and construction industries saw great benefits and opportunities, BIM should also be introduced to landscape architecture.

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.