• 제목/요약/키워드: BIM(Building Information Management)

검색결과 429건 처리시간 0.031초

Developing an User Location Prediction Model for Ubiquitous Computing based on a Spatial Information Management Technique

  • Choi, Jin-Won;Lee, Yung-Il
    • Architectural research
    • /
    • 제12권2호
    • /
    • pp.15-22
    • /
    • 2010
  • Our prediction model is based on the development of "Semantic Location Model." It embodies geometrical and topological information which can increase the efficiency in prediction and make it easy to manipulate the prediction model. Data mining is being implemented to extract the inhabitant's location patterns generated day by day. As a result, the self-learning system will be able to semantically predict the inhabitant's location in advance. This context-aware system brings about the key component of the ubiquitous computing environment. First, we explain the semantic location model and data mining methods. Then the location prediction model for the ubiquitous computing system is described in details. Finally, the prototype system is introduced to demonstrate and evaluate our prediction model.

차세대 스마트도시 시설물의 플랫폼 정의와 디지털 체인 (Next Generation Smart-City Facility Platform and Digital Chain)

  • 양승원;김진웅;김성아
    • 한국BIM학회 논문집
    • /
    • 제10권4호
    • /
    • pp.11-21
    • /
    • 2020
  • With increasing interest and research on smart cities, there is also an increasing number of studies on urban facilities that can be built within smart cities. According to these studies, smart cities' urban facilities are likely to become high value-added industries. However, the concept of smart city is not clear because it involves various fields. Therefore, in this study, the definition of Next-Generation(N.G) Smart City Facilities with Digital Twin and Digital Chain is carried out through a multidisciplinary approach. Based on this, Next-Generation Smart City Facilities will be divided into High Value-Added Products and Big Data Platforms. Subsequently, the definition of the Digital Chain containing the data flow of the entire process built through the construction of the Digital Twin proceeds. The definitions derived are applied to the Next-Generation Noise Barrier Tunnel to ensure that data is exchanged at the Digital Twin stage, and to review the proposed configuration of the Digital Chain and Data Flow in this study. The platform definition and Digital Chain of Next-Generation Smart City Facilities proposed in this study suggest that it can affect not only the aspects of data management that are currently in the spotlight, but also the manufacturing industry as a whole.

Integrating Deep Learning with Web-Based Price Analysis to Support Cost Estimation

  • Musa, Musa Ayuba;Akanbi, Temitope
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.253-260
    • /
    • 2022
  • Existing web-based cost databases have proved invaluable for construction cost estimating. These databases have been utilized to compute approximate cost estimates using assembly rates, unit rates, and etc. These web-based databases can be used independently with traditional cost estimation methods (manual methods) or used to support BIM-based cost estimating platforms. However, these databases are rigid, costly, and require a lot of manual inputs to reflect recent trends in prices or prices relative to a construction project's location. To address this gap, this study integrated deep learning techniques with web-based price analysis to develop a database that incorporates a project's location cost estimating standards and current cost trends in generating a cost estimate. The proposed method was tested in a case study project in Lagos, Nigeria. A cost estimate was successfully generated. Comparison of the experimental results with results using current industry standards showed that the proposed method achieved a 98.16% accuracy. The results showed that the proposed method was successful in generating approximate cost estimates irrespective of project's location.

  • PDF

스마트 기기를 활용한 공동주택 하자 관리의 효율화 방안 (The Effective Process of Apartment Housing Defect Management Using Smart Device)

  • 서정일;이재웅;이정호;김영석
    • 한국BIM학회 논문집
    • /
    • 제2권2호
    • /
    • pp.27-36
    • /
    • 2012
  • 현재 국내에서는 매년 약 40만 세대의 공동주택이 신축되고 있다. 건설업체는 높은 품질의 다양화된 주거 공간을 공급하고 있으며, 입주자들도 고품질의 하자 없는 공동 주택을 원하고 있다. 건설업체는 입주자 요구 사항의 만족과 업체의 브랜드화를 위해 시공단계에서 부터 완공 후 하자 보수 단계 까지 품질 향상을 위한 노력을 기울이고 있다. 그러나 건설 공사의 특성상 여러 공종의 복합적인 결합으로 인해 하자는 불가피하게 발생되고 있으며, 하자의 책임 여부에 있어서 건설업체와 입주자와의 갈등은 법적 분쟁으로까지 이어지고 있어 하자에 대한 체계적인 분석과 계획 수립이 요구되고 있다. 따라서 본 연구에서는 최근 보급률이 높은 스마트 기기의 기능을 이용하여 공동주택 하자를 효과적으로 관리할 수 있는 방안을 제시하고자 한다. 즉, 스마트 기기를 도입한 하자 관리 프로세스를 제안하여 하자 접수와 처리 및 완료 단계에서 하자 처리 관련 시간을 단축하고, 각 하자 관련 주체간의 의사소통을 원활하고 신속하게 수행할 수 있도록 하고자 한다. 또한, 각 하자처리 단계마다 하자에 대한 정보를 체계적으로 데이터베이스화하여 하자관련 분쟁 시 근거 자료 확보에 도움이 되도록 하고자 한다.

KNOTWORKING - A NOVEL BIM-BASED COLLABORATION PRACTICE IN BUILDING DESIGN PROJECTS

  • Hannele Kerosuo;Tarja Maki;Jenni Korpela
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.80-86
    • /
    • 2013
  • Knotworking represents a distributed collaborative expertise in pursuit of a task that is organized among designers from different design disciplines. Construction processes involve phases and tasks that cannot be solved in one organization only, as integration of expert knowledge from various sources is needed. Through knotworking, groups of people, tasks and tools are set to work intensively for a short period of time to solve a problem or accomplish a task. Knotworking requires intensive collaboration across organizational boundaries and hierarchies. The practice of knotworking has been developed and applied in the development of healthcare organizations, libraries and school-university relationships, but it has not previously been applied in the construction industry. In this paper, we describe the concept of knotworking and the findings of a case study that we completed in the Finnish construction industry. We will also compare the similarities and differences of the Big Room and knotworking in terms of participants, duration, target, space/infrastructure, benefits and challenges. Finally, we present some suggestions for further research and experimentation on knotworking in construction projects.

  • PDF

AR과 3D 프린팅 객체를 연계한 건설공사 4D 시스템 구성 연구 (Development of 4D System Linking AR and 3D Printing Objects for Construction Porject)

  • 박상미;김현승;문현석;강인석
    • 대한토목학회논문집
    • /
    • 제41권2호
    • /
    • pp.181-189
    • /
    • 2021
  • 건설현장에서 가상현실 BIM객체의 활용성을 높이기 위해서는 실제 이미지와의 이질감을 해소시켜야 하며, 공정관리 분야 적용시에는 가상현실 공정모습과 실제 공정모습간의 괴리감을 감소시킬 필요가 있다. 연구에서는 이러한 부분을 해소하기 위해 AR (Augmented Reality)과 3D 프린팅 기술이 연계된 4D 모델기반 공정관리 시제품을 구성하여 두 기술이 연동된 4D모델의 활용 가능성을 검토한다. 입체적인 3D 출력물과 AR객체를 접목하여 시공 공정 시뮬레이션을 구현하면 단순한 가상현실기반 4D 모델과 비교시 실체적 이미지기반의 정보로 보다 직관적인 공정 정보를 제공할 수 있다. 이를 위해 연구에서는 3D 프린팅 출력물에 마커를 이용하여 후속공정이 4D 모델로 시뮬레이션되는 AR구현 체계의 방법론 및 시스템 구성의 적정성을 검토한다.

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • 대한공간정보학회지
    • /
    • 제24권2호
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

규칙 기반 분류 기법을 활용한 도로교량 안전등급 추정 모델 개발 (Developing an Estimation Model for Safety Rating of Road Bridges Using Rule-based Classification Method)

  • 정세환;임소람;지석호
    • 한국BIM학회 논문집
    • /
    • 제6권2호
    • /
    • pp.29-38
    • /
    • 2016
  • Road bridges are deteriorating gradually, and it is forecasted that the number of road bridges aging over 30 years will increase by more than 3 times of the current number. To maintain road bridges in a safe condition, current safety conditions of the bridges must be estimated for repair or reinforcement. However, budget and professional manpower required to perform in-depth inspections of road bridges are limited. This study proposes an estimation model for safety rating of road bridges by analyzing the data from Facility Management System (FMS) and Yearbook of Road Bridges and Tunnel. These data include basic specifications, year of completion, traffic, safety rating, and others. The distribution of safety rating was imbalanced, indicating 91% of road bridges have safety ratings of A or B. To improve classification performance, five safety ratings were integrated into two classes of G (good, A and B) and P (poor ratings under C). This rearrangement was set because facilities with ratings under C are required to be repaired or reinforced to recover their original functionality. 70% of the original data were used as training data, while the other 30% were used for validation. Data of class P in the training data were oversampled by 3 times, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was used to develop the estimation model. The results of estimation model showed overall accuracy of 84.8%, true positive rate of 67.3%, and 29 classification rule. Year of completion was identified as the most critical factor on affecting lower safety ratings of bridges.

A formal representation of data exchange for slope stability analysis of smart road design and construction

  • Dai, Ke;Huang, Wuhao;Wen, Ya;Xie, Yuru;Kim, Jung In
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1130-1137
    • /
    • 2022
  • The Industry Foundation Classes (IFC) provides standardized product models for the building construction domain. However, the current IFC schema has limited representation for infrastructure. Several studies have examined the data schema for road and highway modeling, but not in a sufficiently comprehensive and robust manner to facilitate the overall integrated project delivery of road projects. Several discussions have focused on slope engineering for road projects, but no solution has been provided regarding the formalized parametric modeling up to now. Iterative design, analysis, and modification are observed during the process of slope design for road projects. The practitioners need to carry out the stability analysis to consider different road design alternatives, including horizontal, vertical, and cross-section designs. The procedure is neither formalized nor automated. Thus, there is a need to develop the formal representation of the product and process of slope analysis for road design. The objective of this research is to develop a formal representation (i.e., an IFC extension data schema) for slope analysis. It consists of comprehensive information required for slope analysis in a structured manner. The deliverable of this study contributes to both the formal representation of infrastructure development and, further, the automated process of slope design for road projects.

  • PDF

A FRAMEWORK FOR ACTIVITY-BASED CONSTRUCTION MANAGEMENT SIMILATION

  • Boong Yeol Ryoo
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.732-737
    • /
    • 2009
  • Due to various project delivery methods and the complexity of construction projects in the construction industry, developing the framework of construction management for critical, highly complex projects in the construction industry has become problematic. Currently, a set of construction manuals play a pivotal role in planning and managing construction projects as subcontractors try to complete their scope of work according to the instructions of a general contractor. It is challenging for general contractors to write a construction management procedure manual to cover various types of project delivery methods and construction projects. In construction, the construction procedure manuals describe specific actions to be taken through the project. In reality a few contactors own such manuals and their construction schedules include more construction operation activities. Thus, it is hard to estimate the workload and productivity of construction managers because the manual and the schedule do not present the amount of management efforts required to complete a project. This paper proposes a framework to present construction management tasks according to project delivery methods which can be applied to various construction projects. Actions for management tasks were mapped and were integrated with construction activities throughout the project life cycle. The framework can then be used to give specific instructions to project participants, collect management actions, and replicate management actions throughout the project life cycle. The framework can also be can used to visualize complete construction project to analyze and manage construction management activities in each phase of a project in order to enhance productivity and efficiency. The studies of existing construction manuals were carried out to identify construction managers' responsibilities. An artificial intelligence program, CLIPS (C-Language Integrated Production System) was used to search for appropriate actions for impending tasks from a set of predefined actions to be performed for a given situation. The framework would significantly help construction managers to understand interrelations among management tasks or actions within a project. Furthermore, the framework can be embedded into Building Information Modeling (BIM) or Facility Management Systems (FMS) so that designers and constructors would execute constructability review before construction begins.

  • PDF