DOI QR코드

DOI QR Code

Development of 4D System Linking AR and 3D Printing Objects for Construction Porject

AR과 3D 프린팅 객체를 연계한 건설공사 4D 시스템 구성 연구

  • Received : 2020.11.18
  • Accepted : 2021.01.14
  • Published : 2021.04.01

Abstract

In order to increase the practical usability of the virtual reality(VR)-based BIM object in the construction site, the difference between the virtual image and the real image should be resolved, and when it is applied to the construction schedule management function, it is necessary to reduce the image gap between the virtual completion and the actual completion. In this study, in order to solve this problem, a prototype of 4D model is developed in which augmented reality (AR) and 3D printing technologies are linked, and the practical usability of a 4D model linked with two technologies is verified. When a schedule simulation is implemented by combining a three-dimensional output and an AR object, it is possible to provide more intuitive information as a tangible image-based schedule information when compared to a simple VR-based 4D model. In this study, a methodology and system development of an AR implementation system in which subsequent activities are simulated in 4D model using markers on 3D printing outputs are attempted.

건설현장에서 가상현실 BIM객체의 활용성을 높이기 위해서는 실제 이미지와의 이질감을 해소시켜야 하며, 공정관리 분야 적용시에는 가상현실 공정모습과 실제 공정모습간의 괴리감을 감소시킬 필요가 있다. 연구에서는 이러한 부분을 해소하기 위해 AR (Augmented Reality)과 3D 프린팅 기술이 연계된 4D 모델기반 공정관리 시제품을 구성하여 두 기술이 연동된 4D모델의 활용 가능성을 검토한다. 입체적인 3D 출력물과 AR객체를 접목하여 시공 공정 시뮬레이션을 구현하면 단순한 가상현실기반 4D 모델과 비교시 실체적 이미지기반의 정보로 보다 직관적인 공정 정보를 제공할 수 있다. 이를 위해 연구에서는 3D 프린팅 출력물에 마커를 이용하여 후속공정이 4D 모델로 시뮬레이션되는 AR구현 체계의 방법론 및 시스템 구성의 적정성을 검토한다.

Keywords

References

  1. Alizadehsalehi, S., Hadavi, A. and Huang, J. C. (2020). "From BIM to extended reality in AEC industry." Automation in Construction, Vol. 116, DOI: https://doi.org/ 10.1016/j.autcon.2020.103254.
  2. Bang, J. S. and Choi, E. J. (2012). Domestic and overseas technology trends and development prospects of augmented reality, Emerging Issue Report(16), Korea Institute of Science and Technology Information (in Korean).
  3. Behzadan, A. H. and Kamat, V. R. (2013). "Enabling discovery-based learning in construction using telepresent augmented reality." Automation in Construction, Vol. 33, pp. 3-10, DOI: https://doi.org/10.1016/j.autcon.2012.09.003.
  4. Buswell, R. A., Soar, R. C., Gibb, A. G. F. and Thorpe, A. (2007). "Freeform construction: mega-scale rapid manufacturing for construction." Automation in Construction, Vol. 16, No. 2, pp. 224-231, DOI: https://doi.org/10.1016/j.autcon.2006.05.002.
  5. Chen, K., Chen, W., Cheng, J. C. P. and Wang, Q. (2020). "Developing efficient mechanisms for BIM-to-AR/VR data transfer." Journal of Computing in Civil Engineering, Vol. 34, No. 5, ASCE, DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000914.
  6. Craveiroa, F., Duartec, J. P., Bartoloa, H. and Bartolo, J. P. (2019). "Additive manufacturing as an enabling technology for digital construction: A perspective on construction 4.0." Automation in Construction, Vol. 103, pp. 251-267, DOI: https://doi.org/10.1016/j.autcon.2019.03.011.
  7. Davila Delgado, J. M., Oyedele, L., Beach, T. and Demian, P. (2020). "Augmented and virtual reality in construction: Drivers and limitations for industry adoption." Journal of Construction Engineering and Management, ASCE, Vol. 146, No. 7, pp. 1-34, DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001844.
  8. Feng, P., Meng, X., Chen, J. F. and Ye, L. (2015). "Mechanical properties of structures 3D printed with cementitious powders." Construction and Building Materials, Vol. 93, pp. 486-97, DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.132.
  9. Jung, S. J. and Lee, T. H. (2014). "Study of trends in the architecture and the economic efficiency of 3D printing technology." Journal of the Korea Academia-Industrial Cooperation Society, Vol. 15 No. 10 pp. 6336-6343. DOI: https://doi.org/10.5762/kais.2014.15.10.6336.
  10. Kang, L. S. (2016), Development of visual system and object-oriented technology of multi-dimensional construction information for BIM application, Final Report, Advanced Research Program, Korae Research Foundation (in Korean).
  11. Kang, L. S. (2020). Construction information technology & BIM, Donghwa Technology Books (Co. Ltd.) (in Korean).
  12. Kim, S. Y., Kim, H. S., Moon, H. S. and Kang, L. S. (2013). "Field applicability of augmented reality technology by marker mapping for construction project (Focused on measurement process of rebar work)." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 33, No. 6, pp. 2509-2518, DOI: https://doi.org/10.12652/ksce.2013.33.6.2509.
  13. Lee, Y. J. and Kim, E. K. (2015). "Development of outdoor augmented reality based 3D visualization application for realistic experience of structures." The Korea Institute of Electronic Communication Science, Vol. 10, No. 2, pp. 305-310, DOI: 10.13067/JKIECS.2015.10.2.305.
  14. Moon, H. S., Kim, H. S., Kim, C. H. and Kang, L. S. (2014). "Development of a schedule-workspace interference management system simultaneously considering the overlap level of parallel schedules and workspaces." Automation in Construction, Vol. 39, pp. 93-105, DOI: https://doi.org/10.1016/j.autcon.2013.06.001.
  15. Moreta-Martinez, R., Garcia-Mato, D., Garcia-Sevilla, M., Perez-Mananes, R., Calvo-Haro, J. A. and Pascau, J. (2020). "Combining augmented reality and 3D printing to display patient models on a smartphone." Journal of Visualized Experiments 2020, Vol. 155, pp. 1-10. DOI: https://doi.org/10.3791/60618.
  16. Morris, L. (2018). Augmented reality takes 3-D printing to next level, Phys.Org, February 2018, Available at: https://news.cornell.edu/stories/2018/02/augmented-reality-takes-3-d-printing-next-level (Accessed: August 13, 2020)
  17. Oh, Y. J. and Kim, E. K. (2013). "Development of augmented reality based 3D model interaction user-interface for supporting ship design drawing information." The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 8, No. 12, pp. 1933-1940, DOI: https://doi.org/10.13067/JKIECS.2013.8.11.1933.
  18. Trimble Inc. (2018). Trimble and DAQRI collaborate on the integration of trimble's mixed-reality solutions and DAQRI Smart Helmet, News Release, Available at: http://www.trimble.com/news/release.aspx?id=030817a (Accessed: August 19, 2020).
  19. Wang, T. K. and Piao, Y. (2019). "Development of BIM-AR-based facility risk assessment and maintenance system." Journal of Performance of Constructed Facilities, Vol. 33, No. 6, ASCE, DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0001339.
  20. Wang, X., Truijens, M., Hou, L., Wang, Y. and Zhou, Y. (2014). "Integrating augmented reality with building information modeling: Onsite construction process controlling for liquefied natural gas industry." Automation in Construction, Vol. 40, pp. 96-105, DOI: https://doi.org/10.1016/j.autcon.2013.12.003.
  21. Yang, M. D., Chao, C. F., Huang, K. S., Lu, L. Y. and Chen, Y. P. (2013). "Image-based 3D scene reconstruction and exploration in augmented reality." Automation in Construction, Vol. 33, pp. 48-60. DOI: https://doi.org/10.1016/j.autcon.2012.09.017.
  22. Zollmann, S., Hoppe, C., Kluckner, S., Poglitsch, C., Bischof, H. and Reitmay, G. (2014). "Augmented reality for construction site monitoring and documentation." Proceedings of the IEEE, Vol. 102, No. 2, pp. 137-54, DOI: https://doi.org/10.1109/JPROC.2013.2294314.