Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.165-172
/
2020
In this paper we propose an uses on-device-based edge computing technology and big data analysis methods through the use of on-device-based edge computing technology and analysis of big data, which are distributed computing paradigms that introduce computations and storage devices where necessary to solve problems such as transmission delays that occur when data is transmitted to central centers and processed in current general smart factories. However, even if edge computing-based technology is applied in practice, the increase in devices on the network edge will result in large amounts of data being transferred to the data center, resulting in the network band reaching its limits, which, despite the improvement of network technology, does not guarantee acceptable transfer speeds and response times, which are critical requirements for many applications. It provides the basis for developing into an AI-based facility prediction conservation analysis tool that can apply deep learning suitable for big data in the future by supporting intelligent facility management that can support productivity growth through research that can be applied to the field of facility preservation and smart factory industry with integrated hardware technology that can accommodate these requirements and factory management and control technology.
The social media data and the broadcasting data related to onion as well as agri-food consumer panel data were collected and investigated if the amount of money spent to purchase onion in year 2014 when onion price plunged latest were correlated with the frequencies of onion-related keywords in the social media data and the broadcasting programs because onion price in year 2018 is expected to plunge due to overproduction and there has been needs to analyze impacts of social media and broadcasting program on onion purchase in the previous similar events, and identify potential factors that can promote onion consumption in advance. What we identified from our study include a) broadcasting news programs mentioning words "onion," were correlated with onion purchase with 3 - 6 weeks in advance; b) broadcasting entertainment programs mentioning words "onion and health," were correlated with onion purchase with 11 weeks in advance; c) blog mentioning words "onion and efficacy," were correlated with onion purchase with 5 weeks in advance. Our study provided a case on how social media and broadcasting programs could be analyzed for their effects on consumer purchase behavior using big data collection and analysis in the field of agriculture. We propose to use the findings from the study may be applied to promote onion consumption.
The aim of this study was to analyze dieting practices and tendencies in 2016 using big data. The keywords related to diet were collected from the portal site Naver and analyzed through simple frequency, N-gram, keyword network, and analysis of seasonality. The results showed that exercise had the highest frequency in simple frequency analysis. However, diet menu appeared most frequently in N-gram analysis. In addition, analysis of seasonality showed that the interest of subjects in diet increased steadily from February to July and peaked in October 2016. The monthly frequency of the keyword highfat diet was highest in October, because that showed the 'Low Carbohydrate High Fat' TV program. Although diet showed a certain pattern on a yearly basis, the emergence of new trendy diets in mass media also affects the pattern of diet. Therefore, it is considered that continuous monitoring and analysis of diet is needed rather than periodic monitoring.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.5
/
pp.34-48
/
2019
The purpose of this study was two-fold; first, to develop safety performance functions (SPF) using transportation-related big data for all types of roads in Korea were developed, Second, to provide basic information to develop measures for relatively dangerous roads by evaluating the safety grade for various roads based on it. The coordinates of traffic accident data are used to match roads across the country based on the national standard node and link system. As independent variables, this study effort uses link length, the number of traffic volume data from ViewT established by the Korea Transport Research Institute, and the number of dangerous driving behaviors based on the digital tachograph system installed on commercial vehicles. Based on the methodology and result of analysis used in this study, it is expected that the transportation safety improvement projects can be properly selected, and the effects can be clearly monitored and quantified.
The Journal of the Convergence on Culture Technology
/
v.7
no.1
/
pp.432-438
/
2021
This dissertation's object is to confirm the drastic popularity of La Peste of Albert Camus in Korea post-corona society using big data as the mean of inductive research. Analyzing news articles concerning Camus and investigating word frequency of the book La Peste will affirm the implications La Peste has on current Korea society as the outbreak spreads. As an analysis tool, Bigkinds of Korea Press Foundation and Nuagedemots, the French version of Word Cloud were used. For the past 30 years, Albert Camus has been known in Korea as the writer of L'étranger, but after the epidemic, he earned more reputation with La Peste. Compared to L'étranger that rebelled against the world's absurdity with ennui, La peste emphasizes the importance of resistance accompanied by solidarity. La peste conveys hope by depicting disastrous situations of citizens who confront the plague by organizing a health college. The novel delivers a lot of ethical inspiration to humanity in this exceptional circumstance of COVID-19.
With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.32
no.3
/
pp.268-278
/
2022
Objectives: This study aimed to establish a control group based on the big data from National Health Insurance Service. We also presented presented the number of incidences for each cancer, and analyzed the cancer incidence rate among Korean workers. Methods: The cohort definition was separated by 'baseline cohort', 'dynamic cohort', and 'fixed- industry cohort' according to the definition. Cancer incidence was calculated based on the Korean Standard Classification of Disease code. Incidence rate was calculated among the group of all workers and public officials. Based on the study subjects and each cohort definition, the number of observations, incidences, and the incidence rate according to sex and age groups was calculated. The incidence rate was estimated based on the incidence per 100,000 person-year, and 95% confidence intervals calculated according to the Poisson distribution. Results: The result shows that the number of cancer cases in the all-worker group decreases after the age of 55, but the incidence rate tends to increase, which is attributed to the retirement of workers over 55 years old. Despite the specific characteristics of the workers, the trend and figures of cancer incidence revealed in this study are similar to those reported in previous studies of the overall South Korean population. When comparing the incidence rates of all workers and the control group of public officials, the incidence rate of public officials is generally observed to be higher in the age group under the age of 55. On the other hand, for workers aged 60 or older, the incidence rates were 1,065.4 per 100,000 person-year for all workers and 1,023.7 per 100,000 person-year for civil servants. Conclusions: This study analyzed through health insurance data including all workers in Korea, and analyzed the incidence of cancer of workers by sex and age. In addition, further in-depth researches are needed to determine the incidence of cancer by industry.
Purpose: This study was conducted to understand the public awareness of landslide and check dams in 2015-2020 using the big data platform 'Hyean' and to confirm the utilization of this platform in disaster prevention areas. Method: The total amount, number of detection by period by media, and affirmative and negative trends of a search for 'landslide' and 'check dam' in 2015-2020 were analyzed using a keyword search of 'Hyean.' Result: There is significant lack of public awareness of check dam compared to landslide, and the trend is more noticeable in the conspicuous gap of data amount between the news and SNS media. The number and the timing of the search for 'landslide' coincided with the actual occurrence of landslide, while the detection of 'check dam' was less related to it. Relatively affirmative preception for the check dam is inferred, but it was difficult to confirm accurate statistical affirmative and negative trends in the disaster prevention field using 'Hyean.' Conclusion: Unlike the experts who expect positive public awareness of check dam, the statistic results show that the public awareness of the check dam as an effective countermeasure against landslide was extremely low. Active promotion of erosion control projects should be carried out first, and a balanced sample survey should accompany online and periodic field surveys. Since there is a limit to grasping the effective perception in the field of disaster prevention area using 'Hyean', it should be very cautious to establish local/governmental policies using it.
Background: This study was conducted to confirm the service quality management of care workers, who are direct service personnel of long-term care insurance for the elderly, using unstructured big data. Methods: Using a textome, this study collected and analyzed unstructured social data related to care workers' service quality. Frequency, TF-IDF, centrality, semantic network, and CONCOR analyses were conducted on the top 50 keywords collected by crawling the data. Results: As a result of frequency analysis, the top-ranked keywords were 'Long-term care services,' 'Care workers,' 'Quality of care services,' 'Long term care,' 'Long term care facilities,' 'Enhancement,' 'Elderly,' 'Treatment,' 'Improvement,' and 'Necessity.' The results of degree centrality and eigenvector centrality were almost the same as those of the frequency analysis. As a result of the CONCOR analysis, it was found that the improvement in the quality of long-term care services, the operation of the long-term care services, the long-term care services system, and the perception of the psychological aspects of the care workers were of high concern. Conclusion: This study contributes to setting various directions for improving the service quality of care workers by presenting perceptions related to the service quality of care workers as a meaningful group.
Journal of the Korea Society of Computer and Information
/
v.28
no.9
/
pp.17-25
/
2023
In this paper, we propose a model that can perform human pose estimation through a MobileViT-based model with fewer parameters and faster estimation. The based model demonstrates lightweight performance through a structure that combines features of convolutional neural networks with features of Vision Transformer. Transformer, which is a major mechanism in this study, has become more influential as its based models perform better than convolutional neural network-based models in the field of computer vision. Similarly, in the field of human pose estimation, Vision Transformer-based ViTPose maintains the best performance in all human pose estimation benchmarks such as COCO, OCHuman, and MPII. However, because Vision Transformer has a heavy model structure with a large number of parameters and requires a relatively large amount of computation, it costs users a lot to train the model. Accordingly, the based model overcame the insufficient Inductive Bias calculation problem, which requires a large amount of computation by Vision Transformer, with Local Representation through a convolutional neural network structure. Finally, the proposed model obtained a mean average precision of 0.694 on the MS COCO benchmark with 3.28 GFLOPs and 9.72 million parameters, which are 1/5 and 1/9 the number compared to ViTPose, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.