• Title/Summary/Keyword: BIG4

Search Result 3,612, Processing Time 0.032 seconds

A Study on the User Demand Forecasting and Improvement Plan of Gimpo City Library Service

  • Noh, Younghee;Chang, Inho;Kang, Ji Hei;Chang, Rosa
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.10 no.4
    • /
    • pp.7-27
    • /
    • 2020
  • With accommodation of a population of many young people and families due to Hangang River New Town Housing Project and development of railway station spheres, a need is increasing to improve the quality of public libraries service for Gimpo citizens and to establish more libraries. This study thus analyzed the book lending data of Gimpo City libraries, and the city's libraries-related social media big data in an effort to forecast the users, and thus to propose four library service improvement measures. First, in terms of book gathering and book development policy plans, a proposal was made to expand good books for children and youth, and to expand general original-language books related to learning of English, and English books for children. Second, in terms of the establishment of additional libraries or specialization strategy, a proposal was made to establish exclusive children's libraries or English libraries, and to establish library specialization strategy with a focus on children and English themes. Third, in terms of library culture programs, a proposal was made to provide library culture programs in relation to children education and to expand weekend library culture programs. Fourth, in terms of library facilities, considering the convenience of parking facilities, a proposal was made to establish libraries near apartment complexes.

Wellness Prediction in Diabetes Mellitus Risks Via Machine Learning Classifiers

  • Saravanakumar M, Venkatesh;Sabibullah, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.203-208
    • /
    • 2022
  • The occurrence of Type 2 Diabetes Mellitus (T2DM) is hoarding globally. All kinds of Diabetes Mellitus is controlled to disrupt over 415 million grownups worldwide. It was the seventh prime cause of demise widespread with a measured 1.6 million deaths right prompted by diabetes during 2016. Over 90% of diabetes cases are T2DM, with the utmost persons having at smallest one other chronic condition in UK. In valuation of contemporary applications of Big Data (BD) to Diabetes Medicare by sighted its upcoming abilities, it is compulsory to transmit out a bottomless revision over foremost theoretical literatures. The long-term growth in medicine and, in explicit, in the field of "Diabetology", is powerfully encroached to a sequence of differences and inventions. The medical and healthcare data from varied bases like analysis and treatment tactics which assistances healthcare workers to guess the actual perceptions about the development of Diabetes Medicare measures accessible by them. Apache Spark extracts "Resilient Distributed Dataset (RDD)", a vital data structure distributed finished a cluster on machines. Machine Learning (ML) deals a note-worthy method for building elegant and automatic algorithms. ML library involving of communal ML algorithms like Support Vector Classification and Random Forest are investigated in this projected work by using Jupiter Notebook - Python code, where significant quantity of result (Accuracy) is carried out by the models.

Appeared on the Metaverse Platform Typing the Interface Properties of the Extended Space (메타버스형 플랫폼에 나타난 확장공간의 인터페이스 특성 유형분석)

  • Jang, Jinha;Lim, Kyungran
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.94-105
    • /
    • 2022
  • This study looks at the recently increasing metaverse platform from the perspective of users. Therefore, to understand the metaverse concept as an extended space, we looked at the spatial theory and looked at the paradigm from the perspective of lifestyle and technological change. The case was viewed as 'big tech', and it was shown to be developing in various forms. simulation, Immersense, It is reclassified into Tranconnect and Explorience interfaces to suggest directions for use in various fields.

A study on Metaverse Consumer perception survey before and after Covid-19 using CONCOR analysis on BIG Data

  • Min, Byun Kwang;Hwan, Ryu Gi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.36-40
    • /
    • 2022
  • Many parts of life have been changed due to the unprecedented coronavirus outbreak, and Noncontact has now become a general culture of society around the world. Also, many years later, after the Fourth Industrial Revolution, it is now deeply embedded in the human lifestyle. The purpose of this paper's research is to investigate the metaverse perception before and after Corona. It was confirmed that the number of metaverse, the central keyword, was 70971 before Corona, but 261767 after Corona, which was more than three times the frequency. In addition, it was confirmed that the number of COVID-19, the reference point of this study, increased significantly to 1,9236 during the pre-COVID-19 period. Through this, it can be inferred that the metaverse accelerated and developed significantly after the corona. Metaverse about Keywords such as cryptocurrency, cryptocurrency, coin, and exchange appeared before Corona, and the word frequency ranking for blockchain, which is an underlying technology, was high, but after Corona, the word frequency ranking fell significantly as mentioned above. As such, it was confirmed that keywords for metaverse were changing before and after Corona, and as such, Consumers' perceptions were also changing.

Encoding Dictionary Feature for Deep Learning-based Named Entity Recognition

  • Ronran, Chirawan;Unankard, Sayan;Lee, Seungwoo
    • International Journal of Contents
    • /
    • v.17 no.4
    • /
    • pp.1-15
    • /
    • 2021
  • Named entity recognition (NER) is a crucial task for NLP, which aims to extract information from texts. To build NER systems, deep learning (DL) models are learned with dictionary features by mapping each word in the dataset to dictionary features and generating a unique index. However, this technique might generate noisy labels, which pose significant challenges for the NER task. In this paper, we proposed DL-dictionary features, and evaluated them on two datasets, including the OntoNotes 5.0 dataset and our new infectious disease outbreak dataset named GFID. We used (1) a Bidirectional Long Short-Term Memory (BiLSTM) character and (2) pre-trained embedding to concatenate with (3) our proposed features, named the Convolutional Neural Network (CNN), BiLSTM, and self-attention dictionaries, respectively. The combined features (1-3) were fed through BiLSTM - Conditional Random Field (CRF) to predict named entity classes as outputs. We compared these outputs with other predictions of the BiLSTM character, pre-trained embedding, and dictionary features from previous research, which used the exact matching and partial matching dictionary technique. The findings showed that the model employing our dictionary features outperformed other models that used existing dictionary features. We also computed the F1 score with the GFID dataset to apply this technique to extract medical or healthcare information.

A Study on the Implementation of Crawling Robot using Q-Learning

  • Hyunki KIM;Kyung-A KIM;Myung-Ae CHUNG;Min-Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.15-20
    • /
    • 2023
  • Machine learning is comprised of supervised learning, unsupervised learning and reinforcement learning as the type of data and processing mechanism. In this paper, as input and output are unclear and it is difficult to apply the concrete modeling mathematically, reinforcement learning method are applied for crawling robot in this paper. Especially, Q-Learning is the most effective learning technique in model free reinforcement learning. This paper presents a method to implement a crawling robot that is operated by finding the most optimal crawling method through trial and error in a dynamic environment using a Q-learning algorithm. The goal is to perform reinforcement learning to find the optimal two motor angle for the best performance, and finally to maintain the most mature and stable motion about EV3 Crawling robot. In this paper, for the production of the crawling robot, it was produced using Lego Mindstorms with two motors, an ultrasonic sensor, a brick and switches, and EV3 Classroom SW are used for this implementation. By repeating 3 times learning, total 60 data are acquired, and two motor angles vs. crawling distance graph are plotted for the more understanding. Applying the Q-learning reinforcement learning algorithm, it was confirmed that the crawling robot found the optimal motor angle and operated with trained learning, and learn to know the direction for the future research.

A Study on the Trend Change of Restaurant Entrepreneurship through Big Data Analysis

  • Jong-Hyun Park;Yang-Ja Bae;Jun-Ho Park;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.332-341
    • /
    • 2023
  • Notable trends in the restaurant start-up market after the lifting of social distancing include increasing interest in start-ups, emphasizing the importance of food quality and diversity, decreasing the relative importance of delivery services, and increasing interest in certain industries. The data collection period is three years from April 2021 to May 2023, including before and after social distancing, and texts extracted from blogs, news, cafes, web documents, and intellectuals provided by Naver, Daum, and Google were collected. For the collected data, the top 30 words were derived through a refining process. In addition, based on April 2021, the application period of social distancing, data from April 2021 to April 2022, and data from May 2022 to May 2023, Through these changes in trends, founders can capture new opportunities in the market and develop start-up strategies. In conclusion, this paper provides important insights for founders in accurately understanding the changes in food service start-up trends and in developing strategies appropriate to the current market situation.

Computational Analysis on Twitter Users' Attitudes towards COVID-19 Policy Intervention

  • Joohee Kim;Yoomi Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.358-377
    • /
    • 2023
  • During the initial period of the COVID-19 pandemic, governments around the world implemented non-pharmaceutical interventions. For these policy interventions to be effective, authorities engaged in the political discourse of legitimising their activity to generate positive public attitudes. To understand effective COVID-19 policy, this study investigates public attitudes in South Korea, the United Kingdom, and the United States and how they reflect different legitimisation of policy intervention. We adopt a big data approach to analyse public attitudes, drawing from public comments posted on Twitter during selected periods. We collect the number of tweets related to COVID-19 policy intervention and conduct a sentiment analysis using a deep learning method. Public attitudes and sentiments in the three countries show different patterns according to how policy interventions were implemented. Overall concern about policy intervention is higher in South Korea than in the other two countries. However, public sentiments in all three countries tend to improve following implementation of policy intervention. The findings suggest that governments can achieve policy effectiveness when consistent and transparent communication take place during the initial period of the pandemic. This study contributes to the existing literature by applying big data analysis to explain which policies engender positive public attitudes.

Comparative Analysis of the Status of Restaurant Start-ups Before and After the Lifting of Social Distancing Through Big Data Analysis

  • Jong-Hyun Park;Yang-Ja Bae;Jun-Ho Park;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.353-360
    • /
    • 2023
  • This paper explores notable shifts in the restaurant startup market following the lifting of social distancing measures. Key trends identified include an escalated interest in startups, a heightened focus on the quality and diversity of food, a relative decline in the importance of delivery services, and a growing interest in specific industry sectors. The study's data collection spanned three years, from April 2021 to May 2023, encompassing the period before and after social distancing. Data were sourced from a range of online platforms, including blogs, news sites, cafes, web documents, and intellectual forums, provided by Naver, Daum, and Google. From this collected data, the top 50 words were identified through a refinement process. The analysis was structured around the social distancing application period, comparing data from April 2021 to April 2022 with data from May 2022 to May 2023. These observed trend changes provide founders with valuable insights to seize new market opportunities and formulate effective startup strategies. In summary, We offer crucial insights for founders, enabling them to comprehend the evolving dynamics in food service startups and to adapt their strategies to the current market environment.

Efficient Application Way of Six Sigma at Railway Construction Project (철도건설사업의 6시그마의 효율적 적용방안)

  • Hong, Sung-Heui;Jung, Sung-Bong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1251-1262
    • /
    • 2011
  • K-company, being in charge of domestic railway construction and facilities management, got a success rate of 41% with the implement of a improvement scheme by prosecuting of 6 Sigma and the achievement of CTQ (Success criteria : more than 0.5 in achievement of CTQ). It is clear that the factors having an effect on achievement of CTQ are the level of project when pushing forward the project(Big Y and small y according to the scope of the work), the degree of interest of an officer in charge like sponsors, and the continuous feedback toward the implement of a improvement scheme. For improvement CTQ achievement, firstly redefine about a type of project. Secondly, derive small y by Big Y and derives a unit work by small y. Then grouping the unit works and achieve Big Y by performing of every unit work as an executive subject. Thirdly organize a committee of subject selection which is supervised by the general manager. Therefore exhibit staff's leadership, for example motivation, by strong incentives. Lastly, provide ongoing learning and enhance system monitoring about a result management of an betterment execution department.

  • PDF