The Journal of the Korea institute of electronic communication sciences
/
v.13
no.4
/
pp.837-844
/
2018
In order to increase the generation of renewable energy, it is necessary to increase or decrease the generation amount of existing generators. The generators that respond rapidly to increase / decrease the generation amount generally have high generation cost. Therefore, Cost effectiveness is affected. In this paper, we propose a PV remote control system with big data to minimize the uncertainty of solar power generation prediction.
Journal of Korean Institute of Industrial Engineers
/
v.42
no.4
/
pp.296-303
/
2016
In public transportation, smart cards have been introduced for the purpose of convenient payment systems. The smart card transaction data can be utilized not only for the exact and convenient payment but also for civil planning based on travel tracking of citizens. This paper focuses on the analysis of the transportation convenience using the smart card big data. To this end, a new index is developed to measure the transit convenience of each region by considering how passengers actually experience the transportation network in their travels. The movement data such as movement distance, time and amount between regions are utilized to access the public transportation convenience of each region. A smart card data of five working days in March is used to evaluate the transit convenience of each region in Seoul city. The contribution of this study is that a new transit convenience measure was developed based on the reality data. It is expected that this measure can be used as a means of quantitative analysis in civil planning such as a traffic policy or local policy.
The Journal of the Convergence on Culture Technology
/
v.5
no.4
/
pp.251-258
/
2019
This study proposed a system that can improve the employment rate and maintenance employment rate by filtering information related to employment in analyzing big data for students who want to find employment. The subject was a two-year female university, the existing employment strategy participated in the job search with simple information such as school grades and personality. As a result, the maintenance employment rate was relatively low due to the decrease in the satisfaction of students seeking employment and the incompatibility with the post-employment aptitude. In order to solve these problems, we propose a system that determines and filters whether the input data in the process of analyzing big data such as employment-related information to improve employment and maintenance employment rates.
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.335-336
/
2019
5G를 비롯한 무선 네트워크의 발달과 인터넷의 보급이 보편화되어 가고 있다. 또한, 스마트폰 등의 모바일 기기 등이 일상화됨에 따라 방대하고 다양한 유형의 데이터들이 발생되고 있다. 이와 같은 범람하기 시작한 정보와 데이터들을 연결하여 새로운 가치를 창출하는 초지능 연결의 4차 산업혁명 시대가 도래하였다. 이러한 4차 산업혁명은 ICBM(IoT, Cloud, Big data, Mobile) 기술이 발달함에 따라 가능했으며. 그중 빅데이터는 초지능 연결의 근간이 되고 있다. 하지만, 빅데이터에서의 데이터는 다양한 목적에 의해 다양한 유형의 데이터를 모두 포함하고 있음에도 데이터 포맷 및 데이터 셋 등의 불일치에 의해 즉각적인 연결은 불가능하다. 본 논문에서는 스마트 공장을 중심으로 서로 다른 형태의 이기종 데이터를 통합하여 처리할 수 있는 빅데이터 처리 플랫폼을 제안한다.
Approaches to find hidden values using various and enormous amount of data are on the rise. As big data processing becomes easier, companies directly collects data generated from users and analyzes as necessary to produce insights. User-based data are utilized to predict patterns of gameplay, in-game symptom, eventually enhancing gaming. Accordingly, in this study, we tried to analyze the gaming strategy and user activity patterns utilizing Battlegrounds in-game data to detect the in-game hack.
This study is on the trend of real estate market using text mining and big data. The data were collected through internet news posted on Naver from August 2016 to August 2017. As a result of TF-IDF analysis, the frequency was high in the order of housing, sale, household, real estate market, and region. Many words related to policies such as loan, government, countermeasures, and regulations were extracted, and the region - related words appeared the most frequently in Seoul. The combination of the words related to the region showed that the frequencies of 'Seoul - Gangnam', 'Seoul - Metropolitan area', 'Gangnam - reconstruction' and 'Seoul - reconstruction' appeared frequently. It can be seen that the people's interest and expectation about the reconstruction of Gangnam area is high.
LEE, JINHO;KIM, AE SOOK;Hwang, Chi-Gon;Ryu, Gi Hwan
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.41-46
/
2022
The purpose of this study is to confirm and analyze the impact on consumers through big data keyword analysis on weak food. For data collection, web documents, blogs, news, cafes, intellectuals, academic information, and Google Web, news, and Facebook provided by Naver and Daum were used as analysis targets. The data analysis period was set from January 2018 to December 2021. For data collection and analysis, the frequency and matrix of keywords were extracted through Textom, a social matrix site, and the relationship and connection centrality between keywords were analyzed and visualized using the Netdraw function among UCINET6 programs. In addition, CONCOR analysis was conducted to derive clusters for similar keywords. As a result of analyzing yakseon food with keywords, a total of 35,985 cases of collected data were derived. Through this, it was confirmed that medicinal food affects consumers. Furthermore, if a business model is created and developed through yakseon food, it will be possible to lead the popularization of yakseon food.
Background: This study used text mining techniques to determine public perceptions of dental fear, extracted keywords related to dental fear, identified the connection between the keywords, and categorized and visualized perceptions related to dental fear. Methods: Keywords in texts posted on Internet portal sites (NAVER and Google) between 1 January, 2000, and 31 December, 2022, were collected. The four stages of analysis were used to explore the keywords: frequency analysis, term frequency-inverse document frequency (TF-IDF), centrality analysis and co-occurrence analysis, and convergent correlations. Results: In the top ten keywords based on frequency analysis, the most frequently used keyword was 'treatment,' followed by 'fear,' 'dental implant,' 'conscious sedation,' 'pain,' 'dental fear,' 'comfort,' 'taking medication,' 'experience,' and 'tooth.' In the TF-IDF analysis, the top three keywords were dental implant, conscious sedation, and dental fear. The co-occurrence analysis was used to explore keywords that appear together and showed that 'fear and treatment' and 'treatment and pain' appeared the most frequently. Conclusion: Texts collected via unstructured big data were analyzed to identify general perceptions related to dental fear, and this study is valuable as a source data for understanding public perceptions of dental fear by grouping associated keywords. The results of this study will be helpful to understand dental fear and used as factors affecting oral health in the future.
This study aims to analyze international trade papers published in Korea during the past 2002-2022 years. Through this study, it is possible to understand the main subject and direction of research in Korea's international trade field. As the research mythologies, this study uses the big data analysis such as the text mining and Social Network Analysis such as frequency analysis, several centrality analysis, and topic analysis. After analyzing the empirical results, the frequency of key word is very high in trade, export, tariff, market, industry, and the performance of firm. However, there has been a tendency to include logistics, e-business, value and chain, and innovation over the time. The degree and closeness centrality analyses also show that the higher frequency key words also have been higher in the degree and closeness centrality. In contrast, the order of eigenvector centrality seems to be different from those of the degree and closeness centrality. The ego network shows the density of business, sale, exchange, and integration appears to be high in order unlike the frequency analysis. The topic analysis shows that the export, trade, tariff, logstics, innovation, industry, value, and chain seem to have high the probabilities of included in several topics.
Journal of the Korean Society of Clothing and Textiles
/
v.48
no.4
/
pp.729-743
/
2024
This research explores consumer preferences for materials in different clothing product categories, using web-crawling and text mining techniques. Specifically, the study focuses on the material-related terms found in consumer reviews across three distinct product categories: functional clothing, formal shirts, and knit sweaters. Top-selling products within each category were identified on the Naver Shopping website based on the volume of reviews, and the four most-reviewed products were selected. Six hundred reviews per product were analyzed using the Textom big-data analysis software to determine the frequency of material-related mentions and word associations. The analysis utilized two comparative metrics: product category and usage duration. Our findings reveal notable variations in the material preferences mentioned by consumers across different product categories. The study suggests a need to re-evaluate existing standardized review criteria to better reflect consumer interests specific to each product category. Additionally, an increase in material-related terms in reviews over one month indicates the potential importance of extending the duration of product reviews to enhance the accuracy of information that reflects longer-term consumer experiences with material quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.