• Title/Summary/Keyword: BIG4

Search Result 3,617, Processing Time 0.031 seconds

National Cancer Control Plan of the Korea: Current Status and the Fourth Plan (2021-2025)

  • Kyu-Tae Han;Jae Kwan Jun;Jeong-Soo Im
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.3
    • /
    • pp.205-211
    • /
    • 2023
  • Cancer management has become a major policy goal for the government of the Korea. As such, the government introduced the National Cancer Control Plan (NCCP) to reduce the individual and social burdens caused by cancer and to promote national health. During the past 25 years, 3 phases of the NCCP have been completed. During this time, the NCCP has changed significantly in all aspects of cancer control from prevention to survival. The targets for cancer control are increasing, and although some blind spots remain, new demands are emerging. The government initiated the fourth NCCP in March 2021, with the vision of "A Healthy Country with No Concerns about Cancer Anywhere at Any Time," which aims to build and disseminate high-quality cancer data, reduce preventable cancer cases, and reduce gaps in cancer control. Its main strategies include (1) activation of cancer big data, (2) advancement of cancer prevention and screening, (3) improvement in cancer treatment and response, and (4) establishment of a foundation for balanced cancer control. The fourth NCCP has many positive expectations, similar to the last 3 plans; however, cross-domain support and participation are required to achieve positive results in cancer control. Notably, cancer remains the leading cause of death despite decades of management efforts and should continue to be managed carefully from a national perspective.

A Study on Notification Method of Personal Information Usage History using MyData Model (마이데이터 모델을 활용한 개인정보 이용내역 통지 방안 연구)

  • Kim, Taekyung;Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • With the development of the 4th industry, big data using AI is being used in many areas of our lives, and the importance of data is increasing accordingly. In particular, as various services using personal information appear and hacking attacks that exploit them appear in various ways, the importance of personal information management is increasing. Personal information must be managed safely even when collecting, retaining, using, providing, and destroying personal information, and the rights of information subjects must be protected. In this paper, an analysis was performed on the notification of usage history during the protection of the rights of information subjects using the MyData model. According to the Personal Information Protection Act, users must be periodically notified of the use of personal information, so we notify each individual of the use of personal information through e-mail or SNS once a year. It is difficult to understand and manage which company use my personal information. Therefore, in this paper, a personal information usage history notification system model was proposed, and as a result of performance analysis, it is possible to provide the controllability, availability, integrity, source authentication, and personal information self-determination rights.

Convergence research on the speaker's voice perceived by listener, and suggestions for future research application

  • Hahm, SangWoo
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • Although research on the leader's or speaker's voice has been continuously conducted, existing research has a single point of view. Sound analysis of voice characteristics has been studied from engineering perspectives, and leadership trait theory has been studied from a business perspective. Convergence studies on leader voice and member cognition are being attempted today. Convergence research on voice has a positive effect on refinement of voice analysis, diversification of voice use, and establishment of voice utilization strategy. This study explains the current flow of research on convergence between speaker's voice and listener's perception, and suggests a direction for the future development of voice fusion research. Furthermore, in connection with AI in the 4th industrial age, new attempts for voice research are sought. First, advances in AI focus on strategically generating the voices needed for individual situations. Second, the voice corrected in real time will support the leader and speaker to utilize the desired voice type. Third, voices through AI based on big data will affect the cognition, attitude and behavior of individual listeners who members, customers, and students in more diverse situations. The purpose and significance of this study is to suggest the way to research the leader's voice recognized by members, and to suggest a method that can be applied in various situations.

Research Trend Analysis of QR Code (QR Code 관련 연구 동향 분석)

  • Lee, Eun-Ji;Jang, Ji-Kyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.367-368
    • /
    • 2021
  • 본 연구의 목적은 빅데이터 분석을 통해 QR 코드에 관한 연구 동향을 살펴보고 향후 활용 방안을 수립하는 데 그 방향성을 제시하는 것이다. 먼저 QR 코드에 관한 주제 분야별, 연도별 연구 동향을 살펴보고, 텍스트 분석을 실시한다. 아울러 이 결과를 데이터 시각화하여 분석결과를 살펴본다. 구체적으로 본 연구는 데이터 scraping 및 수집을 하였으며, R x64 4.0.2 프로그램 패키지를 활용 전처리 활동과 빅데이터 분석을 하였다. 본 연구의 결과는 다음과 같다. 첫째, 전반적으로 QR 코드 관련 연구가 지속적으로 증가하는 추세가 발견되었다. 둘째, 빈출키워드를 분석한 결과 주제 분야별, 연도별로 다소 차이가 있으나 전반적으로 모든 분야에서 QR 코드 사용이 유사한 형태로 나타났다. 본 연구는 QR 코드에 관한 연구가 다양한 분야에서 활용되고 있으며, 향후에도 같은 추세로 활용가능성이 높음을 확인하였다. 본 연구의 결과는 QR 코드가 사회문화적 현상을 반영하고 있으며, 우리는 이를 정보의 수단 및 활용의 관점으로 접근할 필요가 있음을 시사한다. 본 연구의 결과는 QR 코드에 관한 정부지원 및 활성화 방안을 마련하는데 유용한 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

Analysis of remote learning trends in the COVID-19 period using news big data (뉴스 빅데이터를 활용한 코로나 19시기의 원격 교육 동향 분석)

  • Lee, Youngho;Koo, Dukhoi
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.193-197
    • /
    • 2021
  • The pandemic situation caused by COVID-19 has a large and small impact on our society socially, economically, psychologically, and other aspects. In order to prevent the spread of COVID-19, various countries, including Korea, have entered into long-term home care and distance learning systems. However, distance learning experiments conducted in many countries have raised whether face-to-face education can be replaced by distance learning. Therefore, in this study, public opinion, social perception, and field trends were analyzed based on media reports on distance learning. For this purpose, 2,600 articles from 11 newspapers and four broadcasters related to distance learning were collected in this study. Based on this data, keyword trend analysis, topic modeling analysis, sentiment analysis were performed.

  • PDF

What is the role of big data in water-related disaster mitgiation? (물재해 예방에 있어서 빅데이터의 역할은 무엇인가?)

  • Kam, Jonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.81-81
    • /
    • 2020
  • 4차산업 혁명 이후, 빅 데이터는 사이버 공간을 통한 사회적 파장이 큰 사건들에 대한 대중의 정보 수집 패턴을 이해하는 데에 있어서 전에 경험하지 못한 급속한 발전을 이루어 왔다. 사이버 공간에서 이루어지는 대중들의 정보수집 활동을 모니터링하므로서 대중들사이에서 떠오르는 주제나 사건을 파악하기에 좋은 인덱스로 여러 사회 경제분야에 활용되어 왔다. 하지만, 수자원 관리 및 방재관점에서는 이런 빅데이터을 활용한 연구 사례는 찾아 보기 힘들다. 하지만, 이런 빅데이터를 가뭄기에 대중들이 어떻게 반응하였는지를 연구하는 데에 활용될 수 있다. 이 발표에서 발표자는 미국 2011-17년 캘리포니아 가뭄의 선례연구들을 통해 주 또는 국가 범위에서 구글 이용자들의 정보수집 활동을 기록한 구글트렌즈 데이터를 가뭄기동안 대중의 정보 수집량을 바탕으로 가뭄 위험 인지도를 정의하고 대중의 행동 양식을 이해하는 데에 어떻게 활용할 수 있는 지를 소개한다. 첫번째로, 최근 캘리포니아에서 발생한 다년간의 가뭄동안 그 주안의 주민들의 행동양식 분석 결과를 소개한다. 두번째로는 미국 49개의 주에서 지난 2004년부터 2018년동안의 지역적 가뭄에 대한 대중의 가뭄 위험인지도를 시공간적인 양식을 주성분분석기술을 통해 분석한 결과을 소개한다. 끝으로, 발표자는 지난 미국 선례 연구들에서 발표자가 제안한 기술이 어떻게 대한민국에서 홍수나 가뭄 방재에 적용할 수 있으며 앞으로 대한민국을 수재해에 준비된 나라로 만드는 데에 있어서 빅데이터의 역할을 제시하고자 한다.

  • PDF

Analysis of the Spread of Non-face-to-face Educational Environment using Metaverse (메타버스를 이용한 비대면 교육환경의 확산 현황 분석)

  • Hwang, Eui-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.163-164
    • /
    • 2022
  • 본 연구는 최근 2년(2019.12.1.~2021. 11.30)간 빅카인즈를 이용하여 '메타버스 AND 비대면 교육' 키워드가 포함된 뉴스 검색 결과 1148건을 바탕으로 관계도 분석, 연관어 키워드 빈도수 및 연관어 가중치 분석을 하였다. 첫째, 관계도 분석에서 가중치 '5'로 적용한 12개의 키워드 가중치로 코로나19(64), 아바타(43), 코로나(22), 유니버스(21), 게더타운(15), 패러다임(12), 신입사원(12), 로블록스(7)로 나타났다. 둘째, 연관어 키워드 월간 빈도수로는 2019.12~ 2020.9(0건), 2020.10(1건), 2021.3(19건), 2021.4(34건), 2021.6(72건), 2021.9 (196건), 2021.11애는 233건으로 급격하게 증가하였다. 셋째 키워드와의 연관성(가중치/키워드 빈도수)으로 코로나19(113.96/515), 가상세계(67.75/ 344), 메타버스(58.36/103), 메타(49.8/5730), 가상공간(45.57/380) 순이었다. 이 분석 결과에서 위드코로나 시대의 비대면 교육으로 메타버스에 기반을 둔 가상공간 활용 교육은 더욱 증가될 것으로 예상된다.

  • PDF

Clinical Impact of Palliative Surgery in Unresectable Stage IV Colorectal Cancer (절제 불가능한 4기 대장암에서 고식적 수술의 임상적 효과)

  • Yoonsuk Lee
    • Journal of Digestive Cancer Research
    • /
    • v.5 no.1
    • /
    • pp.32-36
    • /
    • 2017
  • In unresectable stage IV colorectal cancer, the role of palliative surgery is not defined clearly. The palliative surgery can be categorized into two surgeries; first, palliative primary tumor resection; second, palliative metastatectomy. Several retrospective studies reported initial palliative systemic chemotherapy in unresectable stage IV colorectal cancer did not increase primary tumor related complications such as obstruction, perforation and hemorrhage, so they insisted that primary tumor resection in asymptomatic stage IV colorectal cancer should be preserved. However, in terms of overall survival and cancer-specific or progression-free survival, several retrospective studies, especially using population-based big data, reported favored survivals in palliative primary tumor resection group. And also several studies reported that palliative metastatectomy such as liver resection without resection of lung metastasis showed better overall survivals. But those results from those studies came from retrospective studies and are likely to be affected by selection bias. Prospective randomized studies are needed to define the benefit of palliative primary tumor resection and metastatectomy in unresectable stage IV colorectal cancer. However, based on the updated evidences, the dogma that palliative primary tumor resection should be preserved in asymptomatic unresectable stage IV colorectal cancer should be questioned.

  • PDF

Spectroscopic Detection of Alfvénic Waves in Chromospheric Mottles of a Solar Quiet Region

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2021
  • We present high resolution spectroscopic observations of transverse magnetohydrodynamic (MHD) waves in mottles located near the solar disk center. Different from previous studies that used transversal displacements of the mottles in the imaging data, we investigated the line-of-sight (LOS) velocity oscillations of the mottles in the spectral data. The observations were carried out by using the Fast Imaging Solar Spectrograph of the 1.6 meter Goode Solar Telescope of Big Bear Solar Observatory. Utilizing the spectral data of the Hα and Ca II 8542 Å lines, we measure the LOS velocity of a quiet region including the mottles and rosettes that correspond to the footpoints of the mottles. Our major findings are as follows: (1) Alfvénic waves are pervasive in the mottles. (2) The dominant period of the waves is 2 to 4 minutes. (3) From the time-distance maps of the three-minute filtered LOS velocity constructed along the mottles, it is revealed that the transverse waves in the mottles are closely related to the longitudinal waves in the rosettes. Our findings support the notion that Alfvénic waves can be generated by mode conversion of the slow magnetoacoustic waves as was shown in sunspot regions by Chae et al. (2021).

  • PDF

Analyzing Key Variables in Network Attack Classification on NSL-KDD Dataset using SHAP (SHAP 기반 NSL-KDD 네트워크 공격 분류의 주요 변수 분석)

  • Sang-duk Lee;Dae-gyu Kim;Chang Soo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.924-935
    • /
    • 2023
  • Purpose: The central aim of this study is to leverage machine learning techniques for the classification of Intrusion Detection System (IDS) data, with a specific focus on identifying the variables responsible for enhancing overall performance. Method: First, we classified 'R2L(Remote to Local)' and 'U2R (User to Root)' attacks in the NSL-KDD dataset, which are difficult to detect due to class imbalance, using seven machine learning models, including Logistic Regression (LR) and K-Nearest Neighbor (KNN). Next, we use the SHapley Additive exPlanation (SHAP) for two classification models that showed high performance, Random Forest (RF) and Light Gradient-Boosting Machine (LGBM), to check the importance of variables that affect classification for each model. Result: In the case of RF, the 'service' variable and in the case of LGBM, the 'dst_host_srv_count' variable were confirmed to be the most important variables. These pivotal variables serve as key factors capable of enhancing performance in the context of classification for each respective model. Conclusion: In conclusion, this paper successfully identifies the optimal models, RF and LGBM, for classifying 'R2L' and 'U2R' attacks, while elucidating the crucial variables associated with each selected model.