• Title/Summary/Keyword: BGA solder ball

Search Result 92, Processing Time 0.027 seconds

Effect of Reflow Time on Mechanical and Electrical Properties of Sn-3.5Ag Solder Joints (Sn-3.5Ag 솔더 접합부의 기계적.전기적 특성에 미치는 리플로우 시간의 효과)

  • Gu Ja-Myeong;Mun Jeong-Hun;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.36-38
    • /
    • 2006
  • We investigated that the metallurgical, mechanical and electrical properties of the Sn-3.SAg/Cu ball grid array (BGA) solder joints at a reflow temperature of $255^{\circ}C$ for different reflow times of 10, 60, 300 and 1800 s. Two different intermetallic compound (IMC) layers, consisting of scallop-shaped $Cu_6Sn_5$ and very thin $Cu_3Sn$, formed at the solder/substrate interface, and their thicknesses increased with increasing reflow time. The shear force peaked after reflow for 60 s, and then significantly decreased with increasing reflow time. The fracture occurred along the solder ball in the initial reflow, but the fraction of the brittle fracture increased with increasing reflow time. The IMC growth and the volume of Cu dissolved in the solder balls affected the electrical property.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Mechanical Characteristic Evaluation of Sn-Ag-Cu Lead Free Solder Ball Joint on The Pad Geometry (패드 구조에 따른 Sn-Ag-Cu계 무연 솔더볼 접합부의 기계적 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of PCB and BGA pad designs was investigated on the mechanical property of Pb-free solder joints. The mechanical property of solder joint was tested by three different test methods of drop impact tests, bending impact test, and high speed shear test. Two kinds of pad design such as NSMD (Non-Solder Mask Defined) and SMD (Solder Mask Defined) were applied with the OSP finished Pb-free solder (Sn-3.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu). in the drop impact test and bending impact test, the characterized lifetime showed the same tendency, and SMD design showed better mechanical property of solder joint than NSMD regardless of test method, which was due to the different crack path. The fracture crack on SMD pad was propagated along the intermetallic compound (IMC) layer of solder joint, while the fracture crack on NSMD pad propagated through upper edge of land which shields pattern. In the high speed shear test, pad lift occurred on the solder joint of NSMD. SMD/SMD combination of pad design consequently illustrated the best mechanical property of BGA/PCB solder joint, followed by SMD/NSMD, NSMD/SMD, and NSMD/NSMD.

Radio Frequency Circuit Module BGA(Ball Grid Array) (Radio Frequency 회로 모듈 BGA(Ball Grid Array) 패키지)

  • Kim, Dong-Young;Jung, Tae-Ho;Choi, Soon-Shin;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.8-18
    • /
    • 2000
  • We presented a BGA(Ball Grid Array) package for RF circuit modules and extracted its electrical parameters. As the frequency of RF system devices increases, the effect of its electrical parasitics in the wireless communication system requires new structure of RF circuit modules because of its needs to be considered of electrical performance for minimization and module mobility. RF circuit modules with BGA packages can provide some advantages such as minimization, shorter circuit routing, and noise improvement by reducing electrical noise affected to analog and digital mixed circuits, etc. We constructed a BGA package of ITS(Intelligent Transportation System) RF module and measured electrical parameters with a TDR(Time Domain Reflectometry) equipment and compared its electrical parasitic parameters with PCB RF circuits. With a BGA substrate of 3${\times}$3 input and output terminals, we have found that self capacitance of BGA solder ball is 68.6fF, and self inductance 146pH, whose values were reduced to 34% and 47% of the value of QFP package structure. S11 parameter measurement with a HP4396B Network Analyzer showed the resonance frequency of 1.55GHz and the loss of 0.26dB. Routing length of the substrate was reduced to 39.8mm. Thus, we may improve electrical performance when we use BGA package structures in the design of RF circuit modules.

  • PDF

Thermal Cycling Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더 접합부의 열사이클링 해석)

  • 유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on system board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. The creep life was estimated the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life was obtained at the thermal cycling test condition from $-65^{\circ}C$ to $150^{\circ}C$. It was increased about 3.5 times in comparison with that from $0^{\circ}C$ to $100^{\circ}C$. At the same conditions, the fatigue life of SMD structure as the change of pad structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF

Characteristic of Intermetallic Compounds for Aging of Lead Free Solders Applied to 48 $\mu$BGA (48 $\mu$BGA에 적용한 무연솔더의 시효처리에 대한 금속간화합물의 특성)

  • Shin, Young-Eui;Lee, Suk;Fujimoto, Kozo;Kim, Jong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2001
  • The concerns of the toxicity and health hazard of lead in solders have demanded the research to find suitable lead-free solder alloys. It was discussed that effect of the intermetallic formation and structure on the reliability of solder joints. In this study, lead-free solder alloys with compositions of Sn/3.5Ag/0.75Cu, Sn/2.0Ag/0.5Cu/2.0Bi were applied to the 48 $\mu$BGA packages. Also, the lead-free solder alloys compared with eutectic Sn/37Pb solder using shear test under various aging temperature. Common $\mu$BGA with solder components was aged at $130^{\circ}C$, $150^{\circ}C$ and $170^{\circ}C$. And the each temperature applied to 300, 600 and 900 hours. The thickness of the intermetallics was measured for each condition and the activation energy for their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS (Energy Dispersive Spectroscopy). These results for reliability of lead-free interconnections are discussed.

  • PDF

Shape Reconstruction of Solder Joints on PCB using Iterative Reconstruction Technique (반복복원 기법을 이용한 전자회로기판의 납땜부 형상 복원)

  • 조영빈;권대갑
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.353-362
    • /
    • 1999
  • This paper presents a shape reconstruction method for automatic inspection of the solder joints on PCBs using X-ray. Shape reconstruction from X-ray radiographic image has been very important since X-ray equipment was used for improving the reliability of inspection result. For this purpose there have been lots of previous works using tomography, which reconstructs the correct shape, laminography or tomosynthesis, which are very fast algorithm. Latter two methods show outstanding performance in cross-sectional image reconstruction of lead type component, but they are also known to show some fatal limitations to some kinds of components such as BGA, because of shadow effect. Although conventional tomography does not have any shadow effect, the shape of PCB prohibits it from being applied to shape reconstruction of solder joints on PCB. This paper shows that tomography using Iterative Reconstruction Technique(IRT) can be applied to this difficult problem without any limitations. This makes conventional radiographic instrument used for shape reconstruction without shadow effect. This means that the new method makes cost down and shadow-free shape reconstruction. To verify the effectiveness of IRT, we develop three dimensional model of BGA solder ball, make projection model to obtain X-ray projection data. and perform a simulation study of shape reconstruction. To compare the performance of IRT with that of conventional laminography or tomosynthesis, reconstruction data are reorganized and error analysis between the original model are also performed.

  • PDF

Reliability of High Temperature and Vibration in Sn3.5Ag and Sn0.7Cu Lead-free Solders (Sn3.5Ag와 Sn0.7Cu 무연솔더에 대한 고온 진동 신뢰성 연구)

  • Ko, Yong-Ho;Kim, Taek-Soo;Lee, Young-Kyu;Yoo, Sehoo;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.31-36
    • /
    • 2012
  • In this study, the complex vibration reliability of Sn-3.5Ag and Sn-0.7Cu having a high melting temperature was investigated. For manufacturing of BGA test samples, Sn-3.5Ag and Sn-0.7Cu balls were joined on BGA chips finished by ENIG and the chips were mounted on PCB finished OSP by using reflow process. For measuring of resistance change during complex vibration test, daisy chain was formed in the test board. From the results of resistance change and shear strength change, the reliability of two solder balls was compared and evaluated. During complex vibration for 120 hours, Sn-0.7Cu solder was more stable than Sn-3.5Ag solder in complex vibration test.

Effect of Ar Gas Plasma Treatment of Plastic Ball Grid Array Package (플라스틱 BGA 패키지의 아르곤 가스 플라즈마 처리 효과)

  • 신영의;김경섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.805-811
    • /
    • 2000
  • Reliability of PBGA(plastic ball grid array) package is weak compared with normal plastic packages. The low reliability is caused by low resistance to the popcorn cracking, which is generated by moisture absorption in PCB(prited circuit board). In this paper, plasma treatment process was used and we analyzed its effects to interface adhesion. The contents of C and Cl decrease after plasma treatment but those of O, Ca, N relatively increase. The plasma treatment improves the adhesion between EMC(epoxy molding compound) and PCB(solder mask). The grade of improvement was over 100% Max, which depends on the properties of EMC. The RMS(root mean square) roughness value of the solder mask surface increases to plasma treatment. There is little difference of adhesion in RF power and treatment time.

  • PDF