• Title/Summary/Keyword: BGA solder ball

Search Result 92, Processing Time 0.022 seconds

Regulation in Shear Test Method for BGA of Flip-chip Packages (플립칩 패키지 BGA의 전단강도 시험법 표준화)

  • Ahn, Jee-Hyuk;Kim, Kwang-Seok;Lee, Young-Chul;Kim, Yong-Il;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • We reported the methodology for the shear test which is one of the evaluation procedure for mechanical reliability of flip-chip package. The shear speed and the tip height are found to be two significant experimental parameters in the shear test. We investigated how these two parameters have an influence on the results, the shear strength and failure mode. In order to prove these experimental inconsistency, simulation using finite element analysis was also conducted to calculate the shear strength and to figure out the distribution of plastic energy inside of the solder ball. The shear strength decreased while the tip height increased or the shear speed decreased. A variation in shear strength due to inconsistent shear conditions made confusion on analyzing experimental results. As a result, it was strongly needed to standardize the shear test method.

Copper Interconnection and Flip Chip Packaging Laboratory Activity for Microelectronics Manufacturing Engineers

  • Moon, Dae-Ho;Ha, Tae-Min;Kim, Boom-Soo;Han, Seung-Soo;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.431-432
    • /
    • 2012
  • In the era of 20 nm scaled semiconductor volume manufacturing, Microelectronics Manufacturing Engineering Education is presented in this paper. The purpose of microelectronic engineering education is to educate engineers to work in the semiconductor industry; it is therefore should be considered even before than technology development. Three Microelectronics Manufacturing Engineering related courses are introduced, and how undergraduate students acquired hands-on experience on Microelectronics fabrication and manufacturing. Conventionally employed wire bonding was recognized as not only an additional parasitic source in high-frequency mobile applications due to the increased inductance caused from the wiring loop, but also a huddle for minimizing IC packaging footprint. To alleviate the concerns, chip bumping technologies such as flip chip bumping and pillar bumping have been suggested as promising chip assembly methods to provide high-density interconnects and lower signal propagation delay [1,2]. Aluminum as metal interconnecting material over the decades in integrated circuits (ICs) manufacturing has been rapidly replaced with copper in majority IC products. A single copper metal layer with various test patterns of lines and vias and $400{\mu}m$ by $400{\mu}m$ interconnected pads are formed. Mask M1 allows metal interconnection patterns on 4" wafers with AZ1512 positive tone photoresist, and Cu/TiN/Ti layers are wet etched in two steps. We employed WPR, a thick patternable negative photoresist, manufactured by JSR Corp., which is specifically developed as dielectric material for multi- chip packaging (MCP) and package-on-package (PoP). Spin-coating at 1,000 rpm, i-line UV exposure, and 1 hour curing at $110^{\circ}C$ allows about $25{\mu}m$ thick passivation layer before performing wafer level soldering. Conventional Si3N4 passivation between Cu and WPR layer using plasma CVD can be an optional. To practice the board level flip chip assembly, individual students draw their own fan-outs of 40 rectangle pads using Eagle CAD, a free PCB artwork EDA. Individuals then transfer the test circuitry on a blank CCFL board followed by Cu etching and solder mask processes. Negative dry film resist (DFR), Accimage$^{(R)}$, manufactured by Kolon Industries, Inc., was used for solder resist for ball grid array (BGA). We demonstrated how Microelectronics Manufacturing Engineering education has been performed by presenting brief intermediate by-product from undergraduate and graduate students. Microelectronics Manufacturing Engineering, once again, is to educating engineers to actively work in the area of semiconductor manufacturing. Through one semester senior level hands-on laboratory course, participating students will have clearer understanding on microelectronics manufacturing and realized the importance of manufacturing yield in practice.

  • PDF