• Title/Summary/Keyword: BER (Bit Error Ratio)

Search Result 279, Processing Time 0.025 seconds

A study on 1 & 2 dimensional minimum mean-squared-error equalization for digital holographic data storage system (디지털 홀로그래픽 데이터 저장 시스템을 위한 1차원 및 2차원 최소 평균-제곱-에러 등화에 관한 연구)

  • 최안식;전영식;정종래;백운식
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.486-492
    • /
    • 2002
  • In this paper. we presented 1 & 2 dimensional minimum mean-squared-error (MMSE) equalization scheme in a digital holographic data storage system to improve bit-error-rate (BER) and to mitigate inter-symbol interference (ISI) which were generated during the data storage and retrieval processes. We showed experimentally for ten data pages retrieved from the holographic storage system that BER and signal-to-noise ratio (SNR) were improved by adopting MMSE equalization.

Bit Error Rate Improvement Scheme for Transmitted Reference UWB Systems (Transmitted Reference UWB 시스템을 위한 비트오율 향상 기법)

  • Kim, Jae-Woon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.540-547
    • /
    • 2009
  • In this paper, we propose a transceiver structure that can effectively improve BER(Bit Error Rate) performance for TR-UWB (Transmitted Reference Ultra Wide Band) systems based on impulse radio. Unlike coherent UWB systems that are too complex for practical implementation while having good BER performances, the complexity of the TR-UWB systems is quite low since they transmit data with the corresponding reference signals and demodulate the data through correlation using these received signals. However, the BER performance in the conventional TR-UWB systems is affected by SNR (Signal-to-Noise Ratio) of the reference templates used in the correlator. To this end, we propose a receiver structure that can effectively improve the BER performance by increasing the SNR of reference templates. Simulation results reveal that the proposed scheme achieves significant BER improvement as compared to the conventional TR-UWB systems.

Performance of Convolution Coding Underwater Acoustic Communication System on Frequency Selectivity Index (주파수 선택 지표에 따른 길쌈 부호 수중 음향 통신 시스템의 성능 평가)

  • Seo, Chulwon;Park, Jihyun;Park, Kyu-Chil;Shin, Jungchae;Jung, Jin Woo;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.494-501
    • /
    • 2013
  • The convolution code(CC) of code rate 1/2 as a forward error correction (FEC) in Quadrature Phase Shift Keying (QPSK) is applied to decrease bit error rate (BER) by background noise and multipath in shallow water acoustic channel. Ratio of transmitting signal bandwidth to channel coherence bandwidth is defined as frequency selectivity index. BER and bit energy-to-noise ratio gain of transmitted signal according to frequency selectivity index are evaluated. In the results of indoor water tank experiment, BER is well matched theoretical results at frequency selectivity index less than about 1.0. And bit energy-to-noise ratio gain is also matched theoretical value of 5 dB. BER is effectively decreased at frequency selective multipath channel with frequency selectivity index higher than 1.0. But bit energy-to-noise ratio greater than a certain size in terms of CC weaving is effective in reducing bit errors. In the results, the defined frequency selectivity index in this study could be applied to evaluate a performance of CC in multipath channel. Also it could effectively reduced BER in a low speed underwater acoustic communication system without an equalizer.

An Effective Clipped Companding Scheme for PAPR Reduction of OFDM Signals (OFDM 신호의 PAPR 감소를 위한 효과적인 Clipped Companding 기법)

  • Kim, Jae-Woon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1010-1018
    • /
    • 2007
  • In this paper, we propose a companding scheme to effectively reduce PAPR (Peak-to-Average Power Ratio) of the OFDM (Orthogonal frequency Division Multiplexing) signals. The proposed scheme is basically based on the companding scheme to consider both complexity and Bit Error Rate (BER) performance, and composed of the clipping followed by the companding scheme. In the first step of the proposed scheme, some of peak signals which do not influence the BER even without them, are clipped. In the second step, the proposed scheme utilizes the ${\mu}-law$ companding to effectively reduce the PAPR. Simulation results show that the proposed clipped companding scheme can provide more PAPR reduction without degradation of the BER performance, as compare to the conventional ${\mu}-law$ companding.

Neural Equalization Techniques in Partial Erasure Model of Nonlinear Magnetic Recording Channel (부분 삭제 모델로 나타난 비선형 자기기록 채널에서의 신경망 등화기법)

  • Choi, Soo-Yong;Ong, Sung-Hwan;You, Cheol-Woo;Hong, Dae-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.103-108
    • /
    • 1998
  • The increase in the capacity of the digital magnetic recording systems inevitably causes severe intersymbol interference (ISI) and nonlinear distortions in the digital magnetic recording channel. In this paper, to cope with severe ISI and nonlinear distortions a neural decision feedback equalizer (NDFE) is applied to the digital magnetic recording channel - partial erasure channel model. In the performance comparison of bit error probability (or bit error ratio : BER) between the NDFE and the conventional decision feedback equalizer (DFE) via computer simulations. It has been found that as nonlinear distortions increase the NDFE has more SNR (SIgnal-to-Noise Ratio) advantage over the conventional DFE. In addition, in spite of the same recording density, as nonlinear distortions are increased, NDFE has the better performance of BER and the greater stability over conventional DFE.

  • PDF

Adaptive Watermarking Method using Watermark Detection Rate (워터마크 검출율에 기반한 적응적 워터마킹 방법)

  • An, Il-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.465-470
    • /
    • 2010
  • This paper proposes an adaptive video watermarking algorithm according to bit detection rate of watermark in MPEG2 system. The watermark strength is adaptively applied as BER(bit error rate) of watermark extracted from decoded frame for motion compensation. Watermark insertion uses a frequency spread spectrum method. A realtime watermark extraction is done directly in the DCT domain during MPEG decoding. The experimental simulations show that PSNR(peak signal to noise ratio) results 31.5dB for a fixed watermark strength and 33.dB for an adaptive watermark strength. Also average BER is 0.126 and less than 0.2 avaliable value.

Performance Analysis of Optical Transmitters with the Non-ideal Mach-Zehnder Modulator

  • Lee, Dong-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.11
    • /
    • pp.9-14
    • /
    • 2008
  • This paper presents the performance analysis of 10[Gb/s] optical duobinary transmitters with the non-ideal Mach-Zehnder modulator which does not have exactly 50/50 splitting/combining ratios by computer simulations. For driving voltage ratios(=driving voltage/switching voltage) with smaller than 100[%], the transmission performance has been greatly affected by extension of LPF bandwidths. Nevertheless, the performance has been degraded when the driving voltage ratio is 100[%]. The smaller driving voltage ratios has, the more sensitivity improves by extension of LPF bandwidths under the asymmetry condition. But the driving voltage ratio with 80[%] has better bit error rate(BER) than those with 50[%] and 25[%].

Performance Analysis of MCDD in an OBP Satellite Communications System

  • Kim, Sang-Goo;Yoon, Dong-Weon
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.529-532
    • /
    • 2010
  • Multi-carrier demultiplexer/demodulator (MCDD) in an on-board processing (OBP) satellite used for digital multimedia services has two typical architectures according to the channel demultiplexing procedure: Multistage multi-carrier demultiplexer (M-MCD) or poly-phase fast Fourier transform (PPF). During the channel demultiplexing, phase and quantization errors influence the performance of MCDD; those errors affect the bit error rate (BER) performance of M-MCD and PPF differently. In this paper, we derive the phase error variances that satisfy the condition that M-MCD and PPF have the same signal to noise ratio according to quantization bits, and then, with these results, analyze the BER performances of M-MCD and PPF. The results provided here may be a useful reference for the selection of M-MCD or PPF in designing the MCDD in an OBP satellite communications system.

Performance Analysis of Hybrid Decode-and-Forward Schemes for 2-hop Wireless Network (2-홉 무선 네트워크를 위한 하이브리드 복호 후 전달 기법의 성능 분석)

  • Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.949-961
    • /
    • 2009
  • This paper analyses BER (Bit Error Rate) performance of 2-hop wireless communications networks with hybrid decode-and-forward (HDF) relays. The conventional HDF method is usually based on the receive signal-to-noise ratio (SNR) for the relay to decide whether to forward the decoded data in order to obviate the erroneous detection at the relay. In contrast, we propose a new solution of using log-likelihood ratio (LLR) as an efficient alternative to SNR. The approximate BER expressions of different HDF schemes are also derived and verified by Monte-Carlo simulations. In addition, we compute the optimum thresholds for HDF schemes. A variety of numerical results demonstrate that the new LLR-based HDF significantly outperforms the SNR-based HDF for any threshold level and relay location under flat Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

MRC Performance Comparison between Rectangular QAM and M-PSK over Nakagami-n Fading Channels (나카가미-n 페이딩 채널에서 직사각 QAM과 M-PSK 신호의 최대비 합성 수신 성능 비교)

  • Lim, Jeong-Seok;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.754-761
    • /
    • 2005
  • We derive and analyze a bit error rate(BER) expression of a Gray coded rectangular QAM(R-QAM) signal with maximal ratio combining diversity(MRC) reception over Nakagami-n(Rician) fading channels. The derived result is provided in terms of the Whittaker function and the confluent hypergeometric function. In addition, by performance comparison with M-PSK, we see the Nakagami-n fading channel characteristics. Because the derived expression is general, it can readily allow numerical e·valuation for various cases of practical interest such as line-of-sight (LOS) or satellite communication channel analysis.