• 제목/요약/키워드: BDNF

검색결과 242건 처리시간 0.037초

Oroxylin A Induces BDNF Expression on Cortical Neurons through Adenosine A2A Receptor Stimulation: A Possible Role in Neuroprotection

  • Jeon, Se-Jin;Bak, Hae-Rang;Seo, Jung-Eun;Han, So-Min;Lee, Sung-Hoon;Han, Seol-Heui;Kwon, Kyoung-Ja;Ryu, Jong-Hoon;Cheong, Jae-Hoon;Ko, Kwang-Ho;Yang, Sung-Il;Choi, Ji-Woong;Park, Seung-Hwa;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.27-35
    • /
    • 2012
  • Oroxylin A is a flavone isolated from a medicinal herb reported to be effective in reducing the inflammatory and oxidative stresses. It also modulates the production of brain derived neurotrophic factor (BDNF) in cortical neurons by the transactivation of cAMP response element-binding protein (CREB). As a neurotrophin, BDNF plays roles in neuronal development, differentiation, synaptogenesis, and neural protection from the harmful stimuli. Adenosine $A2_A$ receptor colocalized with BDNF in brain and the functional interaction between $A2_A$ receptor stimulation and BDNF action has been suggested. In this study, we investigated the possibility that oroxylin A modulates BDNF production in cortical neuron through the regulation of $A2_A$ receptor system. As expected, CGS21680 ($A2_A$ receptor agonist) induced BDNF expression and release, however, an antagonist, ZM241385, prevented oroxylin A-induced increase in BDNF production. Oroxylin A activated the PI3K-Akt-GSK-$3{\beta}$ signaling pathway, which is inhibited by ZM241385 and the blockade of the signaling pathway abolished the increase in BDNF production. The physiological roles of oroxylin A-induced BDNF production were demonstrated by the increased neurite extension as well as synapse formation from neurons. Overall, oroxylin A might regulate BDNF production in cortical neuron through $A2_A$ receptor stimulation, which promotes cellular survival, synapse formation and neurite extension.

복합운동이 과체중 및 비만청소년의 신체구성, 혈중지질 및 BDNF에 미치는 영향 (Effects of Combined Exercise on Body Composition, Blood Lipids, and BDNF in Obese Adolescents)

  • 신석민;김철형
    • 생명과학회지
    • /
    • 제22권9호
    • /
    • pp.1231-1236
    • /
    • 2012
  • 비만은 여러 가지 질환을 유발하는데 이중에서도 뇌신경세포의 활성 및 생성에도 부정적인 영향을 미치는 것으로 보고되고 있어 이에 대한 추가적인 연구가 필요하다. 본 연구는 과체중 및 비만 청소년의 BDNF 개선을 위한 운동 효과를 검증하고자 12주 복합운동에 따른 신체구성, 혈중지질, BDNF의 변화를 분석하였다. 이를 위해 과체중 및 비만 청소년 18명을 복합운동군 9명, 대조군 9명으로 무선표집하여 연구를 진행하였다. 연구 결과 통계적으로 집단간 차이를 보이며 체중(p<0.01), BMI (p<0.05), 체지방률(p<0.05), 체지방량(p<0.01)이 감소하고, 제지방률(p<0.05)이 증가하였다. 또한 TC와 LDL-C의 평균은 운동군이 대조군보다 더 많은 감소 경향을 나타내었고, HDL-C는 두 집단 모두 감소하는 경향을 보였으나 모두 집단간 차이는 나타나지 않았다. 또한 BDNF의 평균은 운동군이 대조군보다 더 많은 증가 경향을 나타내었으나 집단간 차이는 나타나지 않았다. 본 연구를 통하여 12주 복합운동 프로그램은 과체중 및 비만 남자 청소년의 체중, BMI, 체지방률, 체지방량, 제지방률은 개선시킬 수 있으나 혈중 지질 및 BDNF의 변화에는 영향을 미치지 못하는 것을 알 수 있었다. 본 연구를 통하여 12주 복합운동 프로그램은 과체중 및 비만 남자 청소년의 체중, BMI, 체지방률, 체지방량, 제지방률은 개선시킬 수 있으나 혈중 지질 및 BDNF의 변화에는 영향을 미치지 못하는 것을 알 수 있었다.

우울증의 후성유전기전: BDNF 유전자의 히스톤 변형 및 DNA 메틸화의 역할 (Epigenetic Mechanisms of Depression: Role of Histone Modification and DNA Methylation in BDNF Gene)

  • 박성우
    • 생명과학회지
    • /
    • 제28권12호
    • /
    • pp.1536-1544
    • /
    • 2018
  • 우울증은 심각하며 재발하는 흔한 정신질환이다. 우울증은 환경 요인과 유전 요인, 그리고 신경생물학적 체계의 구조 및 기능의 변화로 발병한다. 후성유전학적 변화가 우울증과 관련 된다는 여러 연구들이 보고되었다. 후성 유전은 환경 요인이 크로마틴 구조를 변화시켜 DNA 염기 서열 변화 없이 유전자 발현을 조절하는 기전으로 설명된다. DNA 메틸화와 히스톤 아세틸화 및 메틸화를 포함하고 있는 히스톤 변형이 주요 후성유전기전으로 알려져 있다. 우울증 동물모델연구에서는 생애 초기 스트레스 같은 스트레스 환경이 게놈에 지속적으로 후성유전표지를 남기게 되고 이로 인해 유전자 발현이 변화되고 결국 성체가 되었을 때 신경 기능이나 행동 기능에 영향을 미치게 된다고 설명하고 있다. BDNF는 우울증과 관련된 대표적인 유전자로 알려져 있다. 설치류가 출생 전, 후, 그리고 성체 기간에 스트레스에 노출되면 해마에서 BDNF 유전자의 히스톤 변형과 DNA 메틸화 패턴이 변화되고 이로 인해 BDNF 발현이 변화된다. 이러한 과정은 불안과 우울 행동에도 영향을 미치게 된다. 본 종설에서는 BDNF 유전자의 히스톤 변형 및 DNA 메틸화와 같은 우울증 발병에 관여하는 후성유전기전의 최신 지견에 대해 논의하여 우울증 치료의 새로운 타겟 개발에 도움이 되고자 한다.

트레드밀 운동이 당뇨흰쥐에서 기억력과 해마 BDNF 발현에 미치는 영향 (Effects of Treadmill Exercise on Memory and Hippocampal BDNF Expression in Streptozotocin-induced Diabetic Rats)

  • 이희혁;윤진환;김승희
    • 생명과학회지
    • /
    • 제17권11호
    • /
    • pp.1464-1471
    • /
    • 2007
  • 당뇨병은 만성적 대사질환으로 말초뿐만 아니라 중추신경계에서도 다양한 합병증을 유발시키는 것으로 알려져 있다. 특히, 당뇨환자는 인지기능의 손상으로 인해 치매 유병율이 높은 것으로 보고되고 있다. 규칙적인 운동은 당뇨병의 이차 합병증을 예방하기 위한 치료적 방법으로 흔히 권장된다. 이에 본 연구는 당뇨흰쥐를 대상으로 트레드밀 운동이 기억력과 해마 BDNF 발현에 미치는 효과를 조사하였다. SD계열 흰쥐를 실험동물로 하여 STZ (50 mg/kg) 투여로 유발시킨 당뇨흰쥐를 8주간 주 5회 30분씩 트레드밀에서 달리도록 하였다. 운동프로그램 종료 후, Morris water maze로 기억력을 측정하고, 해마조직을 적출하여 Western으로 brain-derived neurotrophic factor (BDNF) 발현을 정량화하였다. 본 연구결과 8주간의 당뇨는 선행연구과 유사하게 기억력 손상과 함께 해마 조직의 BDNF 발현을 유의하게 감소시키는 것으로 나타났다. 하지만 트레드밀 운동은 당뇨흰쥐에서 기억력과 해마 BDNF 발현을 유의하게 향상시키는 것으로 나타났다. 이러한 결과는 당뇨동물에서 운동이 해마 BDNF 발현의 증가를 통해 인지기능의 손상을 완화시킬 수 있음을 보여주는 것이다.

말초신경손상이 척수후근신경절 및 척수에서 Brain-derived neurotrophic factor 발현에 미치는 양상 (Patterns of the peripheral nerve injury on expression of brain-derived neurotrophic factor in dorsal root ganglia and spinal cord in rats)

  • 하선옥;홍해숙
    • Journal of Korean Biological Nursing Science
    • /
    • 제4권1호
    • /
    • pp.101-112
    • /
    • 2002
  • Peripheral nerve injury results in plastic changes in the dorsal ganglia (DRG) and spinal cord, and is often complicated with neuropathic pain. The mechanisms underlying these changes are not known, but these changes seem to be most likely related to the neurotrophic factors. This study investigated the effects of mechanical peripheral nerve injury on expression of brain-derived neurotrophic factor(BDNF) in the DRG and spinal cord in rats. 1) Bennett model and Chung model groups showed significantly increased percentage of small, medium and large BDNF-immunoreactive neurons in the ipsilateral $L_4$ DRG compared with those in the contralateral side at 1 and 2 weeks of the injury. 2) In the ipsilateral $L_5$ DRG of the Chung model, percentage of medium and large BDNF-immunoreactive neurons increased significantly at 1 week, whereas that of large BDNF-immunoreactive neurons decreased at 2 week when compared with those in the contralateral side. The intensity of immunoreactivity of each neuron was lower in the ipsilateral than in the contralateral DRG. 3) In the spinal cord, the Bennett and Chung model groups showed a markedly increased BDNF-immunoreactivity in axonal fibers of both superficial and deeper laminae. The present study demonstrates that peripheral nerve injury in neuropathic models altered the BDNF expression in the DRG and spinal cord. This may suggest important roles of BDNF in sensory abnormalities after nerve injury and in protecting the large-sized neurons in the damaged DRG.

  • PDF

Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells

  • Ko, Hyun Myung;Jin, Yeonsun;Park, Hyun Ho;Lee, Jong Hyuk;Jung, Seung Hyo;Choi, So Young;Lee, Sung Hoon;Shin, Chan Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.679-688
    • /
    • 2018
  • Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.

The Changes of Growth Patterns and the Production of Brain-Derived Neurotrophic Factors (BDNFs) in Perfusion Cultivation of Human Neuroblastoma Cells

  • Hong, Jong-Soo;Lee, Joo-Nho;Kim, Sun-Hee;Park, Kyung-Yoo;Cho, Jin-Sang;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.323-327
    • /
    • 1999
  • It was shown that brain-derived neurotrophic factors (BDNFs) secreted from human neuroblastoma cells can significantly improve the growth of the neurites of PC12 nerve cells. The addition of purified BDNFs elongated the neurites of PC 12 nerve cells two to three times more than the case where the addition was not made. The perfusion rate strongly affected the change of the size of human neuroblastoma cells because the cell size decreased as the perfusion rate increased. This could also influence the productivity of BDNF from the cells. It is also important to note that the BDNF production was decreased when the cell size was reduced. BDNF production rate also decreased at a fast perfusion rate in a smaller cell size. At the relatively fast perfusion rate of 18 ml/h, the ratio of apoptotic to necrotic cells dramatically decreased, which possibly caused the decrease of BDNF production. It has been proven that the secretion of BDNF from human neuroblastoma cells was a partially growth-related process by yielding 6.2$\times l0^{-8}/g$ of BDNF/cell/h of growth related parameter and $0.48{\times}l0^{-9}/g$ of BDNF/cell/h of nongrowth-related parameter in a growth kinetic model. In addition, it was also found that the perfusion rate played a very important role in controlling the cell death mechanism.

  • PDF

안면신경 압박손상 후 Adenovirus 매개 BDNF 유전자 전달을 통한 신경손상 회복에 관한 연구 (ADENOVIRAL VECTOR MEDIATED IN VIVO GENE TRANSFER OF BDNF PROMOTE FUNCTIONAL RECOVERY AFTER FACIAL NERVE CRUSH INJURY)

  • 양병은;이종호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권4호
    • /
    • pp.308-316
    • /
    • 2006
  • Objectives Despite considerable advances in technique, experience and skill, the precise place of surgery in the treatment of facial nerve injury remains uncertain. We designed a facial nerve crush injury model in rats and evaluated the recovery of crushed nerve which is the most common injury type of facial nerve using adenovirus vector mediated in vivo gene transfer of Brain derived neurotrophic factor(BDNF). Materials and methods In 48 Sprague Dawley rats, we made a facial nerve crush injury model to main trunk before the furcation, and injected a $10^{11}$pfu adenoviral BDNF in experimental group(BDNF adenoviral injection group; ad-BDNF) and $3{\mu}l$ saline in control group(Saline injection group; saline). After a period of regeneration from 10 to 40 days, nerve regeneration was evaluated with functioinal test (vibrissae and ocular movement), electrophysiologic study(threshold, peak voltage, conduction velocity) and histomorphometric study of axon density. Results Vibrissae and ocular movement, threshold and conduction velocity improved as time elapse in both group, however axon density was increased significantly only in experimental group. Functional test in 10 days and 20 days showed no difference between experimental group and control group. Vibrissae movement, threshold, conduction velocity and axon density in 30 days revealed that the regeneration in quality of experimental group was significantly superior to that of control group. Conclusion In general, there is tendency for nerve regeneration in experimental group (BDNF-adenovirus injection group) during 40 days, functional recovery was detected successfully after facial nerve crush in 30 days postoperatively.

인회석 박막 피복 도관과 Brain-derived neurotrophic factor(BDNF) 유전자 이입 슈반세포를 이용한 백서 좌골신경 재생에 관한 연구 (SCIATIC NERVE REGENERATION USING CALCIUM PHOSPHATE COATED CONDUIT AND BRAIN-DERIVED NEUROTROPHIC FACTOR GENE-TRANSFECTED SCHWANN CELL IN RAT)

  • 최원재;안강민;황순정;정필훈;김명진;김남열;유상배;장정원;김현만;김중수;김윤희;김성민;이종호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권3호
    • /
    • pp.199-218
    • /
    • 2005
  • Purpose of Study: Peripheral nerve regeneration depends on neurotrophism of distal nerve stump, recovery potential of neuron, supporting cell like Schwann cell and neurotrophic factors such as BDNF. Peripheral nerve regeneration can be enhanced by the conduit which connects the both sides of transected nerve. The conduit maintains the effects of neurotrophism and BDNF produced by Schwann cells which can be made by gene therapy. In this study, we tried to enhance the peripheral nerve regeneration by using calcium phosphate coated porous conduit and BDNF-Adenovirus infected Schwann cells in sciatic nerve of rats. Materials and Methods: Microporous filter which permits the tissue fluid essential for nerve regeneration and does not permit infiltration of fibroblasts, was made into 2mm diameter and 17mm length conduit. Then it was coated with calcium phosphate to improve the Schwann cell adhesion and survival. The coated filter was evaluated by SEM examination and MTT assay. For effective allogenic Schwann cell culture, dorsal root ganglia of 1-day old rat were extracted and treated with enzyme and antimitotic Ara-C. Human BDNF cDNA was obtained from cDNA library and amplified using PCR. BDNF gene was inserted into adenovirus shuttle vector pAACCMVpARS in which E1 was deleted. We infected the BDNF-Ad into 293 human mammary kidney cell-line and obtained the virus plaque 2 days later. RT-PCR was performed to evaluate the secretion of BDNF in infected Schwann cells. To determine the most optimal m.o.i of BDNF-Ad, we infected the Schwann cells with LacZ adenovirus in 1, 20, 50, 75, 100, 250 m.o.i for 2 hours and stained with ${\beta}$-galactosidase. Rats(n=24) weighing around 300g were used. Total 14mm sciatic nerve defect was made and connected with calcium phosphate coated conduits. Schwann cells$(1{\times}10^6)$ or BDNF-Ad infected Schwann cells$(1{\times}10^6)$ were injected in conduit and only media(MEM) was injected in control group. Twelve weeks after surgery, degree of nerve regeneration was evaluated with gait analysis, electrophysiologic measurements and histomorphometric analysis. Results: 1. Microporous Millipore filter was effective conduit which permitted the adhesion of Schwann cells and inhibited the adhesion of fibroblast. We could enhance the Schwann cell adhesion and survival by coating Millipore filter with calcium phosphate. 2. Schwann cell culture technique using repeated treatment of Ara-C and GDNF was established. The mean number of Schwann cells obtained 1 and 2 weeks after the culture were $1.54{\pm}4.0{\times}10^6$ and $9.66{\pm}9.6{\times}10^6$. 3. The mRNA of BDNF in BDNF-Ad infected Schwann cells was detected using RT-PCR. In Schwann cell $0.69\;{\mu}g/{\mu}l$ of DNA was detected and in BDNF-Adenovirus transfected Schwann cell $0.795\;{\mu}g/{\mu}l$ of DNA was detected. The most effective infection concentration was determined by LacZ Adenovirus and 75 m.o.i was found the most optimal. Conclusion: BDNF-Ad transfected Schwann cells successfully regenerated the 14mm nerve gap which was connected with calcium phosphate coated Millipore filter. The BDNF-Ad group showed better results compared with Schwann cells only group and control group in aspect to sciatic function index, electrophysiologic measurements and histomorphometric analysis.

Lactobacillus johnsonii CJLJ103 Attenuates Scopolamine-Induced Memory Impairment in Mice by Increasing BDNF Expression and Inhibiting NF-κB Activation

  • Lee, Hae-Ji;Lim, Su-Min;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1443-1446
    • /
    • 2018
  • In the present study, we examined whether Lactobacillus johnsonii CJLJ103 (LJ) could alleviate cholinergic memory impairment in mice. Oral administration of LJ alleviated scopolamine-induced memory impairment in passive avoidance and Y-maze tasks. Furthermore, LJ treatment increased scopolamine-suppressed BDNF expression and CREB phosphorylation in the hippocampi of the brain, as well as suppressed $TNF-{\alpha}$ expression and $NF-{\kappa}B$ activation. LJ also increased BDNF expression in corticosterone-stimulated SH-SY5Y cells and inhibited $NF-{\kappa}B$ activation in LPS-stimulated microglial BV2 cells. However, LJ did not inhibit acetylcholinesterase activity. These findings suggest that LJ, a member of human gut microbiota, may mitigate cholinergic memory impairment by increasing BDNF expression and inhibiting $NF-{\kappa}B$ activation.