• Title/Summary/Keyword: BCTMP

Search Result 30, Processing Time 0.021 seconds

Manufacture of Low Density Paper by Cationic Fatty Acid Bulky Promotor Treatment (2) Effect on CTMP Handsheets Properties (양이온성 지방산아민 벌키화제를 이용한 저밀도 종이 제조 (2) -BCTMP 수초지 특성에 미치는 영향-)

  • Nam, Yun-Seok;Choi, Kyoung-Hwa;Cho, Jun-Hyung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.18-23
    • /
    • 2015
  • In this study, the effects of cationic fatty acid bulky promotor on the properties of BCTMP (bleached chemithermomechnical pulp) handsheet including bulk and strength were elucidated. As results, it was observed that the bulk of BCTMP handsheet increased with the increases of the concentration of cationic fatty acid bulky agent, while mechanical properties such as tensile strength and burst strength decreased. The opacity of BCTMP handsheet also increased with the increases of the concentration of cationic fatty acid bulky agent, while brightness was almost not changed. The effectiveness of bulky agent with SwBCTMP (softwood) was higher than that with HwBCTMP (hardwood). Compared with previous research on the effect of bulky agent on BKP handsheet, the bulk increase of BCTMP handsheet was greater compared to that of BKP handsheet. However, the reduction of mechanical property in BCTMP handsheet was lower than that of BKP handsheet.

Effect of HwBKP and HwBCTMP on the Characteristics of Printing Paper (HwBKP 및 HwBCTMP가 인쇄용지(印刷用紙)의 특성에 미치는 영향)

  • Won, Jong Myoung;Nam, Ki Young
    • Journal of Forest and Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.67-76
    • /
    • 1992
  • The effects of HwBCTMP on the characteristics of paper were compared with those of HwBKP. The fiber fraction below 0.1 mm of HwBCTMP was higher than those of HwBKP. HwBCTMP was superior to the HwBKP in the improvement of opacity, apparent density and smoothness, and in the decrease of air permeability. The strength properties and stiffness obtained with the addition of HwBCTMP were better than those of HwBKP. Therefore, HwBCTMP might not only be well substituted for HwBKP but also decrease production cost and improve paper properties.

  • PDF

Studies on the Adsorption of Cationic Starches onto BCTMP, BKP and Talc and Their Responses to Compozil System(I)-Adsorption Characteristics of Cationic Starches (BCTMP, BKP 및 활석의 양성전분 흡착특성과 콤포질 시스템에 대한 거동 연구 (제1보)-양성전분의 흡착특성-)

  • 이학래;허동명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.45-52
    • /
    • 1997
  • This study was carried out to investigate the adsorption characteristics of cationic starches onto BKP, BCTMP and talc. Concentration of the unadsorbed cationic starch contained in the supernatant of the pulp or talc slurries was determined using a spectoscopy method and the adsorption isotherm of cationc starch was constructed. When the equilibrium concentration of the cationic starch was low, almost complete adsorption of the starch onto BKP and BCTMP was observed. This indicates that electrostatic attraction is the main driving force for the adsorption of cationc starches onto pulps. BCTMP adsorbed greater amount of cationic starches than BKP since it contained more anionc functional groups on its surface. The adsorption amount of the cationic starch increased as the cationicity of the starches decreased. Surface charge density of the pulp and starch adsorption increased as the pH of the pulp slurry increased. Adsorption amount of the cationic starch onto talc was lower than that onto the pulp due to its low charge density and hydrophobic surface property.

  • PDF

Effect of Calendering on Compressibility and Surface Properties of Sheets Made of Various Pulps (캘린더 처리가 펄프별 종이의 압축 및 표면 특성에 미치는 영향)

  • Youn Hye Jung;Lee Hak Lae;Chin Seong Min;Lee Sang Gil
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.67-73
    • /
    • 2004
  • Effect of calendering on structural and surface properties of sheets made of various pulp was investigated. BKP, BCTMP and KOCC were used as raw materials for handsheets and sheets were calendered at the different calendering temperature and pressure conditions. Caliper, air permeability, and PPS roughness were reduced by calendering, but their effects were a little different depending on pulp type and calendering condition. Increase of density with increase of calendering Pressure was remarkable on sheet made of BCTMP or KOCC, and the effect of temperature was more significant than pressure. PPS roughness of sheet made of BCTMP or KOCC was reduced by calendering, but BKP sheet showed little reduction of roughness at higher calendering pressure. The compressibility of sheet increased logarithmetically with calendering pressure and surface compressibility of KOCC sheet was relatively higher than other pulps.

Improvement of Wet-end Performance and Paper Strength with Polyvinylamine

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.5 s.113
    • /
    • pp.63-69
    • /
    • 2005
  • This study was performed to introduce recently developed polyvinylamine as a wet-end process and paper strength improving aids. As a retention and drainage aids, high cationic charged polyvinylamine was more effective at the BCTMP and ONP stock condition than LBKP stock condition. As a dry tensile strength aid, dual system of polyvinylamine with anionic polyacrylamide was the best at the LBKP or ONP stock conditions. On the other hand, polyvinyl amine alone was better than dual system of polyvinylamine with anionic polyacrylamide at the BCTMP condition. As a wet tensile strength aid, polyvinylamine single system and dual system of polyvinylamine with anionic polyacrylamide were good at LBKP, BCTMP and ONP stock conditions. However, poly(aminoamide)-epichlorohydrin resin was good at LBKP and ONP stock conditions but efficiency of poly(aminoamide)-epichlorohydrin resin was remarkably decreased at BCTMP stock condition.

Changes of BCTMP Fibers and Handsheets Properties by the Treatment of LB DES at Different Molar Ratios (상이한 몰 비율의 LB 공융용매 처리에 따른 BCTMP 섬유 및 수초지 특성의 변화)

  • Choi, Kyoung-Hwa;Nam, Yun-Seok;Lee, Myoung-Ku;Ryu, Jeong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • This study was conducted to investigate the effects of deep eutectic solvent (DES) treatment on BCTMP fibers and handsheets properties. DES was prepared using lactic acid and betaine (LB), and the molar ratio of these two components mixtures was controlled to 2:1 (LB 2:1) and 5:1 (LB 5:1). As results, 2% of BCTMP pulp (o.d. weight) was extracted when it was treated by LB 5:1 at $50^{\circ}C$ for 12 hours, stirring constantly at 120 rpm. In contrast, lignin was not extracted when BCTMP was mildly treated by the LB DES mixed with 50% of distilled water at the reacting condition of temperature $60^{\circ}C$ for 2 hours using water bath. These results indicate that conditioned water content and adequate reaction time are needed to achieve effective extraction of lignin. It was also found that stiffening of cellulose fiber due to the mild treatment of LB DES to BCTMP fiber leads to the increase of paper bulk without the loss of strength.

An Alternative Fiber Processing Method

  • Seo, Yung-Bum;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.34-42
    • /
    • 2011
  • A fiber processing method, which might be an alternative for conventional refining process, was introduced. The method consists of repetitive, gentle, mechanical impacts on fibers, followed by fiber uncurling process. This method was very effective for OCC and BCTMP for increasing WRVs (water retention value) while keeping fiber lengths from shortening. For OCC and BCTMP, gentle mechanical impacts on fibers using Hobart mixer increased breaking lengths and tear strengths simultaneously at fast drainage level, and straightening fibers using kady mill increased those strength properties further. For SwBKP and HwBKP, only mechanical impacts using the Hobart mixer were effective on increasing tensile and tear strength at fast drainage, but there were no further increase by kady mill treatment. The strength increases of BCTMP by this alternative fiber processing method were exceptionally high. An extensive engineering development should be followed to actualize this fiber processing mechanism in an energy-effect way.

Ultraviolet Microscopic Study on Lignin Distribution in the Fiber Cell Wall of BCTMP

  • Yoon, Seung-Lak;Yasuo Kojina
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2004
  • Bleached chemithermomechanical pulp (BCTMP) was produced from CTMP of Betula maximowicziana Regel by two staged ozone-hydrogen peroxide bleaching in order to improve the optical properties of high yield pulp. This pulp was used for the evaluation of optical properties improvement, chemical characteristics of lignin in fiber and the relationship between lignin and optical properties in fiber cell wall. Hydrogen peroxide treatment improved the brightness, but the post color number (PC No.). There was little improvement on optical properties by ozone treatment, but this could be improved more by using two staged ozone-hydrogen peroxide bleaching. The hydrogen peroxide treatment did not make any change on chemical characteristics of lignin in cell wall, but by ozone treatment, it was found that the non-aromatic conjugated structure was existed in the surface of cell wall, but this could be removed by hydrogen peroxide treatment in two staged ozone-hydrogen peroxide treatment. Therefore, the optical properties was significantly improved, due to the removal of non-aromatic conjugated structure.

Study of paper Strengthening Properties with Polyvinylamine (Polyvinylamine의 지력증강 특성 연구)

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.26-31
    • /
    • 2005
  • The purpose of this study was to confirm paper strengthening properties with recently commercialized polyvinylamine. Because of its high cationic charge density, polyvinylamine has been investigated as a size retention and surface coating aids. In this study, we tried to confirm polyvinylamine as wet-end additives to improve dry and wet strength using LBKP and BCTMP pulps. As a result, we found improvement of dry and wet tensile properties of polyvinylamine with BCTMP were much better than LBKP condition. This phenomena could be explained that ionic bonding of cationic charge of polyvinylamine with abundant anionic substances of BCTMP was a very important factor to improve dry and wet strength of paper.

A New Fiber Processing Method

  • Seo, Yung-Bum;Lee, Chun-Han
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.433-440
    • /
    • 2006
  • A fiber processing method, which might be an alternative for conventional refining process, was introduced. The method consists of repetitive, gentle, mechanical impacts on fiber, and ensued fiber uncurling process. This method was very effective for OCC and BCTMP for increasing WRVs (water retention value) while keeping fiber lengths from shortening. For OCC and BCTMP, gentle mechanical impacts on fibers using Hobart mixer increased breaking lengths and tear strengths simultaneously at fast drainage level, and straightening fibers using kady mill increased those strength properties further. For SwBKP and HwBKP, only mechanical impacts using the mixer were effective on increasing tensile and tear strength at fast drainage, but not kady mill treatment. The strength increases of BCTMP by this alternative fiber processing method were exceptionally high. An extensive engineering development should be followed to actualize this fiber processing mechanism in an energy-effect way.

  • PDF