• Title/Summary/Keyword: BCTI

Search Result 2, Processing Time 0.013 seconds

Analysis of Dynamic Connectedness between Freight Index and Commodity Price (해상운임지수와 상품가격 사이의 동적 연계성 분석)

  • Choi, Ki-Hong;Kim, BuKwon
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.2
    • /
    • pp.49-67
    • /
    • 2022
  • This study applied the method of Diebold and Yilmaz (2012, 2014, 2016) to analyze the connectedness between the Freight Index (BDI, BDTI, BCTI), energy price(oil, natural gas, coal), and grain price(soybean, corn, wheat) from July 19, 2007 to March 31, 2022. The main analysis results of this paper are as follows. First, according to the network analysis results, the total connectedness was measured to be 20.43% for the entire analysis period, indicating that there was a low correlation between the freight index and the commodity price. In addition, looking at the directional results, the variable with the greatest effects was corn, and conversely, the variable with the lowest effects BDI. When classified by events, BCTI was found to play a major role only during the COVID-19 period. Second, according to the results of the rolling-sample analysis, the total connectedness be found to be highly correlated with changes in economic conditions such as the financial crisis, trade war, and COVID-19 when specific events occurred.

Forecasting Bulk Freight Rates with Machine Learning Methods

  • Lim, Sangseop;Kim, Seokhun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.127-132
    • /
    • 2021
  • This paper applies a machine learning model to forecasting freight rates in dry bulk and tanker markets with wavelet decomposition and empirical mode decomposition because they can refect both information scattered in the time and frequency domain. The decomposition with wavelet is outperformed for the dry bulk market, and EMD is the more proper model in the tanker market. This result provides market players with a practical short-term forecasting method. This study contributes to expanding a variety of predictive methodologies for one of the highly volatile markets. Furthermore, the proposed model is expected to improve the quality of decision-making in spot freight trading, which is the most frequent transaction in the shipping industry.