• Title/Summary/Keyword: BCR-ABL positive

Search Result 16, Processing Time 0.019 seconds

Prognostically Significant Fusion Oncogenes in Pakistani Patients with Adult Acute Lymphoblastic Leukemia and their Association with Disease Biology and Outcome

  • Sabir, Noreen;Iqbal, Zafar;Aleem, Aamer;Awan, Tashfeen;Naeem, Tahir;Asad, Sultan;Tahir, Ammara H;Absar, Muhammad;Hasanato, Rana MW;Basit, Sulman;Chishti, Muhammad Azhar;Ul-Haque, Muhammad Faiyaz;Khalid, Ahmad Muktar;Sabar, Muhammad Farooq;Rasool, Mahmood;Karim, Sajjad;Khan, Mahwish;Samreen, Baila;Akram, Afia M;Siddiqi, Muhammad Hassan;Shahzadi, Saba;Shahbaz, Sana;Ali, Agha Shabbir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3349-3355
    • /
    • 2012
  • Background and objectives: Chromosomal abnormalities play an important role in genesis of acute lymphoblastic leukemia (ALL) and have prognostic implications. Five major risk stratifying fusion genes in ALL are BCR-ABL, MLL-AF4, ETV6-RUNX11, E2A-PBX1 and SIL-TAL1. This work aimed to detect common chromosomal translocations and associated fusion oncogenes in adult ALL patients and study their relationship with clinical features and treatment outcome. Methods: We studied fusion oncogenes in 104 adult ALL patients using RT-PCR and interphase-FISH at diagnosis and their association with clinical characteristics and treatment outcome. Results: Five most common fusion genes i.e. BCR-ABL (t 9; 22), TCF3-PBX1 (t 1; 19), ETV6-RUNX1 (t 12; 21), MLL-AF4 (t 4; 11) and SIL-TAL1 (Del 1p32) were found in 82/104 (79%) patients. TCF3-PBX1 fusion gene was associated with lymphadenopathy, SIL-TAL1 positive patients had frequent organomegaly and usually presented with a platelets count of less than $50{\times}10^9/l$. Survival of patients with fusion gene ETV6-RUNX1 was better when compared to patients harboring other genes. MLL-AF4 and BCR-ABL positivity characterized a subset of adult ALL patients with aggressive clinical behaviour and a poor outcome. Conclusions: This is the first study from Pakistan which investigated the frequency of5 fusion oncogenes in adult ALL patients, and their association with clinical features, treatment response and outcome. Frequencies of some of the oncogenes were different from those reported elsewhere and they appear to be associated with distinct clinical characteristics and treatment outcome. This information will help in the prognostic stratification and risk adapted management of adult ALL patients.

Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype?

  • Ahmed, Rifat Zubair;Rashid, Munazza;Ahmed, Nuzhat;Nadeem, Muhammad;Shamsi, Tahir Sultan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.923-926
    • /
    • 2016
  • The classic BCR-ABL1-negative myeloproliferative neoplasm is an operational sub-category of MPNs that includes polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2V617F mutation is found in ~ 95% of PV and 50-60% of ET or PMF. In most of the remaining JAK2V617F-negative PV cases, JAK2 exon 12 mutations are present. Amongst the JAK2V617F-negative ET or PMF 5-10% of patients carry mutations in the MPL gene. Prior to 2013, there was no specific molecular marker described in the remaining 30-40% ET and PMF. In December 2013, two research groups independently reported mutations in the gene CALR found specifically in ET (67-71%) and PMF (56-88%) but not in PV. Initially CALR mutations were reported mutually exclusive with JAK2 or MPL. However, co-occurrence of CALR mutations with JAK2V617F has been reported recently in a few MPN cases. Many studies have reported important diagnostic and prognostic significance of CALR mutations in ET and PMF patients and CALR mutation screening has been proposed to be incorporated into WHO diagnostic criteria for MPN. It is suggestive in diagnostic workup of MPN that CALR mutations should not be studied in MPN patients who carry JAK2 or MPL mutations. However JAK2V617F and CALR positive patients might have a different phenotype and clinical course, distinct from the JAK2-positive or CALR-positive subgroups and identification of the true frequency of these patients may be an important factor for defining the prognosis, risk factors and outcomes for MPN patients.

Presence of Leukemia-maintaining Cells in Differentiation-resistant Fraction of K562 Chronic Myelogenous Leukemia (만성 골수성 백혈병 K562세포의 분화 내성 분획에서 백혈병 유지 세포의 동정)

  • Lee, Hong-Rae;Kim, Mi-Ju;Ha, Gahee;Kim, So-Jung;Kim, Sun-Hee;Kang, Chi-Dug
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • The present study investigated whether leukemia-maintaining cells reside in a differentiation-resistant fraction using a megakaryocytic differentiation model of K562 cells. Treatment with phorbol-12-myristate-13-acetate (PMA) significantly inhibited the colony-forming efficiency of the K562 cells. At a PMA concentration of 1 nM or higher, colony was not formed, but approximately 40% of K562 cells still survived in soft agar. Approximately 70% of colony-forming cells that were isolated following the removal of PMA after exposure to the agent were differentiated after treatment with 10 nM PMA for 3 days. The differentiation rate of the colony-forming cells was gradually increased and reached about 90% 6 weeks after colony isolation, which was comparable to the level of a PMA-treated K562 control. Meanwhile, imatinib-resistant variants from the K562 cells, including K562/R1, K562/R2, and K562/R3 cells, did not show any colony-forming activity, and most imatinib-resistant variants were CD44 positive. After 4 months of culture in drug-free medium, the surface level of CD44 was decreased in comparison with primary imatinib-resistant variants, and a few colonies were formed from K562/R3 cells. In these cells, Bcr-Abl, which was lost in the imatinib-resistant variants, was re-expressed, and the original phenotypes of the K562 cells were partially recovered. These results suggest that leukemia-maintaining cells might reside in a differentiation-resistant population. Differentiation therapy to eliminate leukemia-maintaining cells could be a successful treatment for leukemia if the leukemia-maintaining cells were exposed to a differentiation inducer for a long time and at a high dose.

A Case of Imatinib-mesylate associated Hypersensitivity Pneumonitis (Imatinib-mesylate에 의한 과민성 폐렴 1예)

  • Lee, Jae Wong;Kim, Hye Jin;Kim, Kyu Jin;Shin, Kyeong Cheol;Hong, Yeong Hoon;Chung, Jin Hong;Lee, Kwan Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.4
    • /
    • pp.423-426
    • /
    • 2005
  • Imatinib-mesylate (Gleevec, Glivec) is a protein-tyrosine kinase inhibitor that inhibits the Bcr-Abl tyrosine kinase created by the Philadelphia chromosome abnormality in CML. Imatinib is also used to treat patients with c-kit (CD 117)-positive unresectable tumors, or metastatic malignant gastrointestinal stromal tumors, or both. Imatinib is a welltolerated drug with few side effects. However, it has been associated with gastrointestinal irritation, fluid retention and edema, skin rashes, depigmentation, hepatotoxicity, hemorrhage, and hematological toxicity (anemia, neutropenia, and thrombocytopenia). In addition, imatinib has been associated with dyspnea and cough, which are mainly secondary to the pleural effusion and pulmonary edema, which represent local or general fluid retention. These events appear to be dose related and are more common encountered in the elderly. However, there has been no report of hypersensitivity pneumonitis associated with imatinib-mesylate in Korea. We report a case of 51-year old woman who developed hypersensitivity pneumonitis that might have been induced by imatinib-mesylate during the treatment of a gastrointestinal stromal tumor.

Diagnosis and Monitoring of Chronic Myeloid Leukemia: Chiang Mai University Experience

  • Tantiworawit, Adisak;Kongjarern, Supanat;Rattarittamrong, Ekarat;Lekawanvijit, Suree;Bumroongkit, Kanokkan;Boonma, Nonglak;Rattanathammethee, Thanawat;Hantrakool, Sasinee;Chai-Adisaksopha, Chatree;Norasetthada, Lalita
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2159-2164
    • /
    • 2016
  • Background: A diagnosis of chronic myeloid leukemia (CML) is made on discovery of the presence of a Philadelphia (Ph) chromosome. The success of the treatment of this form of leukemia with tyrosine kinase inhibitor (TKI) is monitored by reduction of the Ph chromosome. Objective: To compare the role of conventional cytogenetic (CC) methods with a real time quantitative polymerase chain reaction (RQ-PCR) and fluorescence in situ hybridization (FISH) for diagnosis and treatment monitoring of CML patients. The secondary outcome was to analyze the treatment responses to TKI in CML patients. Materials and Methods: This was a retrospective study of CML patients who attended the Hematology clinic at Chiang Mai University Hospital from 2005-2010. Medical records were reviewed for demographic data, risk score, treatment response and the results of CC methods, FISH and RQ-PCR. Results: One hundred and twenty three cases were included in the study, 57.7% of whom were male with a mean age of 46.9 years. Most of the patients registered as intermediate to high risk on the Sokal score. At diagnosis, 121 patients were tested using the CC method and 118 (95.9%) were identified as positive. Five patients failed to be diagnosed by CC methods but were positive for BCR-ABL1 using the FISH method. Imatinib was the first-line treatment used in 120 patients (97.6%). In most patients (108 out of 122, 88.5%), a complete cytogenetic response (CCyR) was achieved after TKI therapy and in 86 patients (70.5%) CCyR was achieved long term by the CC method. Five out of the 35 analyzed patients in which CCyR was achieved by the CC method had a positive FISH result. Out of the 76 patients in which CCyR was achieved, RQ-PCR classified patients to only CCyR in 17 patients (22.4%) with a deeper major molecular response (MMR) in 4 patients (5.3%) and complete molecular response (CMR) in 55 patients (72.4%). In the case of initial therapy, CCyR was achieved in 95 patients (79.1%) who received imatinib and in both patients who received dasatinib (100%). For the second line treatment, nilotinib were used in 30 patients and in 19 of them (63.3%) CCyR was achieved. In half of the 6 patients (50%) who received dasatinib as second line or third line treatment CCyR was also achieved. Conclusions: CML patients had a good response to TKI treatment. FISH could be useful for diagnosis in cases where CC analysis failed to detect the Ph chromosome. RQ-PCR was helpful in detecting any residual disease and determining the depth of the treatment response at levels greater than the CC methods.

Radiation-induced Apoptosis is Differentially Modulated by PTK Inhibitors in K562 Cells (K562 백혈병 세포주에서 방사선에 의해 유도되는 Apoptosis에 미치는 PTK Inhibitors의 영향)

  • Lee Hyung Sik;Moon Chang Woo;Hur Won Joo;Jeong Su Jin;Jeong Min Ho;Lee Jeong Hyeon;Lim Young kin;Park Heon Joo
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • Purpose :The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive KS62 leukemia cell line was investigated. Materials and Methods :K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2×106 cells/mL. The cells were irradiated with 10 Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37$^{\circ}C$ for 0$\~$48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bel-2, bel-X$_{L}$ and bax protein levels. Results :Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electro-phoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bel-2 or bel-X$_{L}$ anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30$\~$40$\%$ at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. Conclusion : We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210$^{bcr/abl}$ failed to enhance the radiation induced apoptosis in KS62 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is attributable to bel-2 family. It is plausible that the relationship between cell cycle delays and cell death is essential for drug development based on molecular targeting designed to modify radiation-induced apoptosis.

  • PDF