• Title/Summary/Keyword: BCL-2

Search Result 1,638, Processing Time 0.03 seconds

Methanol Extract of Cassia mimosoides var. nomame Attenuates Myocardial Injury by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Lim, Sun-Ha;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • Interruption of blood flow through coronary arteries and its subsequent restoration triggers the generation of a burst of reactive oxygen species (ROS), leading to myocardial cell death. In this study, we determined whether a methanol extract of Cassia mimosoides var. nomame Makino could prevent myocardial ischemia-reperfusion injury. When radical scavenging activity of the extract was measured in vitro using its ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radical quenching ability, the extract showed an activity slightly lower than that of ascorbic acid. Three days after oral administration of the extract (400 mg/kg/day) to rats, myocardial ischemia/reperfusion injury was generated by 30 min of ligation of the left anterior descending coronary artery (LAD), followed by 3 hr reperfusion. Compared with the vehicle-treated group, administration of the extract significantly reduced infarct size (IS) (ratio of infarct area to area at risk) in the extract-treated group by 28.3%. Reduction in the cellular injury was mediated by attenuation of Bax/Bcl-2 ratio by 33.3%, inhibition of caspase-3 activation from procaspase-3 by 40%, and subsequent reduction in the number of apoptotic cells by 66.3%. These results suggest that the extract attenuates myocardial injury in a rat model of ischemia-reperfusion by scavenging ROS, including free radicals, and consequently blocking apoptotic cascades. Therefore, intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic myocardial injury.

A Case of Human Herpes Virus-8 Unrelated Primary Effusion Lymphoma-Like Lymphoma Presented as Pleural Effusion

  • Kim, Kyung Ho;Lee, Ji-Hyun;Jeong, Hye Cheol;Kim, Gun-Woo;Song, Sang Hee;Jung, So-Young;Kim, Gwang Il;Kim, Eun Kyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.6
    • /
    • pp.336-341
    • /
    • 2012
  • Primary effusion lymphoma (PEL) is a rare type of lymphoma that arises in the body cavity without detectable masses. It is associated with human herpes virus-8 (HHV-8), Epstein-Barr virus (EBV), and human immunodeficiency virus (HIV). Recently, PEL unrelated to viral infection has been reported and it has been termed HHV-8 unrelated primary effusion lymphoma-like lymphoma (HHV-8 unrelated PEL-like lymphoma). Here, we report a case of HHV-8 unrelated PEL-like lymphoma in an 80-year-old woman. Chest X-ray and computed tomography revealed left-sided pleural effusion. Pleural effusion analysis and mediastinoscopic biopsy showed atypical cells that had originated from the B cells. The cells were positive for CD20 and bcl-2, but negative for CD3, CD5, CD21, CD30, CD138, epithelial membrane antigen, and HHV-8. Serological tests for HIV and EBV were negative. Considering the patient's age, further treatments were not performed. She has shown good prognosis without chemotherapy for more than 18 months.

Down-modulation of Bis reduces the invasive ability of glioma cells induced by TPA, through NF-κB mediated activation of MMP-9

  • Lee, Young Dae;Cui, Mei Nu;Yoon, Hye Hyeon;Kim, Hye Yun;Oh, Il-Hoan;Lee, Jeong-Hwa
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.262-267
    • /
    • 2014
  • Bcl-2 interacting cell death suppressor (Bis) has been shown to have anti-apoptotic and anti-stress functions. Recently, increased Bis expression was reported to correlate with glioma aggressiveness. Here, we investigated the effect of Bis knockdown on the acquisition of the invasive phenotype of A172 glioma cells, induced by 12-O-Tetradecanoylphorbol-3-acetate (TPA), using a Transwell assay. Bis knockdown resulted in a significant decrease in the migration and invasion of A172 cells. Furthermore, Bis knockdown notably decreased TPA-induced matrix metalloproteinase-9 (MMP-9) activity and mRNA expression, as measured by zymography and quantitative real time PCR, respectively. A luciferase reporter assay indicated that Bis suppression significantly down-regulated NF-${\kappa}B$-driven transcription. Finally, we demonstrated that the rapid phosphorylation and subsequent degradation of $I{\kappa}B-{\alpha}$ induced by TPA was remarkably delayed by Bis knockdown. These results suggest that Bis regulates the invasive ability of glioma cells elicited by TPA, by modulating NF-${\kappa}B$ activation, and subsequent induction of MMP-9 mRNA.

Curcumin Induces Apoptosis and Inhibits Growth of Human Burkitt's Lymphoma in Xenograft Mouse Model

  • Li, Zai-xin;Ouyang, Ke-qing;Jiang, Xv;Wang, Dong;Hu, Yinghe
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.283-289
    • /
    • 2009
  • Curcumin, a natural compound extracted from rhizomes of curcuma Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor and anti-oxidative properties. However, the mechanism of action of the compound remains poorly understood. In this report, we have analyzed the effects of curcumin on the cell proliferation of Burkitt's lymphoma Raji cells. The results demonstrated that curcumin could effectively inhibit the growth of Raji cells in a dose- and time-dependent manner. Further studies indicated that curcumin treatment resulted in apoptosis of cells. Biochemical analysis showed that the expression of Bax, Bid and cytochrome C were up-regulated, while the expression of oncogene c-Myc was down regulated after curcumin treatment. Furthermore, poly (ADP-ribose) polymerase (PARP) cleavage was induced by the compound. Interestingly, the antiapoptotic Bcl-2 expression was not significantly changed in Raji cells after curcumin treatment. These results suggested that the mechanism of action of curcumin was to induce mitochondrial damage and therefore led to Raji cell apoptosis. We further investigated the in vivo effects of curcumin on the growth of xenograft tumors in nude mice. The results showed that curcumin could effectively inhibit tumor growth in the xenograft mouse model. The overall results showed that curcumin could suppress the growth of Burkitt's lymphoma cells in both in vitro and in vivo systems.

Study of Paljinhangahm-dan on Anti-tumoral Effect and Mechanism (팔진항암단의 항종양효과 및 기전연구)

  • Bae Nam Kyu;Moon Seok Jae;Won Jin Hee;Kim Dong Woung;Moon Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1143-1150
    • /
    • 2002
  • Recent evidence suggests that many Oriental Medicinal prescriptions are effective in cancer patients as a supportive care. Oriental Medicinal herbs have been investigated extensively and are known to have multiple pharmacological effect. These herbs contain a variety of ingredients which may act synergistically to inhibit tumor cell division, to increase tumor cell death (apoptosis), and to increase the proportion of immune cells within tumor. Paljinhangahm-dan (Paljin) has been used to treat for cancer patients in Oriental Medicine for decades. The effects of aqueous extract of Paljin on the induction of apoptotic cell death were investigated in human leukemia cell lines (HL-60, Jurkat, Molt-4 and U937). The viability of leukemia cells was markedly decreased by Paljin in a dose-dependent manner. Paljin induced the apoptotic death of leukemia cells, which was characterized by the ladder-pattern DNA fragmentation, and chromatin condensation of the nuclei. Paljin digested Bid protein but did not affect Bcl-2 protein level and also, induced mitochondrial dysfunction disrupted as shown as the mitochondrial membrane potential. It activated caspase-9 and caspase-3. thereby resulted in cleavage of poly(ADP) ribose polymerase(PARP). These results indicate that Paljin induces apoptosis of human leukemia cells via activation of intrinsic caspase cascades with mitochondrial dysfunction.

Apoptotic effect of Me fraction of Scutellaria barbata in human leukemic U937 cells (반지련의 Methyl chloride 분획이 U937 단핵 세포 암주의 세포고사에 미치는 영향)

  • Cha Yun Yi;Lee Eun Ok;Lee Ju Ryoung;Kang In Cheol;Park Young Doo;Ahn Kyoo Seok;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.629-632
    • /
    • 2003
  • Scutellaria barbata has been used as a traditional Chinese Herb for treating liver, lung and rectal tumors. In the present study, cytotoxic effect of Scutellaria barbata MC fradtion was investigated and it was found to inhibit proliferation of human leukemic U937 cells with an IC50 of approximately 10 μg/ml in a dose-dependent manner. We also demonstrated that Scutellaria barbata MC fraction caused apoptosis in U937 cells. In the flow cytometric assay, the MC fraction-treated U937 cells showed an increase in hypo-diplold Sub G1 DNA contents. DNA fragmentation was observed by TUNEL assay. An increase of Bax:Bcl-2 ratio, activation of caspase-9, caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) were demonstrated by western blot analysis. Taken together, these results exerted that the MC fraction suppressed human leukemic U937 cell proliferation by inducing apoptosis via the mitochondrial pathway.

Induction of Apoptotic Cell Death by Insamsapye-tang Extract in Human Lung Cancer A549 Cells (인삼사폐탕 추출물에 의한 인체 폐암세포의 Apoptosis 유도 기전에 관한 연구)

  • Park Cheol;Lee Min Woo;Kim Won Il;Lee Won Ho;Park Dong Il;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2003
  • We investigated the effects of Insamsapye-tang (ISSPT) water extract on the growth of human lung carcinoma A549 cells. Upon treatment with ISSPT extract, a concentration-dependent inhibition of cell viability was observed and cells developed many of the hallmark features of apoptosis, including condensation of chromatin. Flow cytometry analysis confirmed that ISSPT treatment increased populations of apoptotic-sub G1 phase. In addition, proteolytic degradation of poly(ADP-ribose) polymerase (PARP) and β-catenin protein were observed after treatment of ISSPT extract. These apoptotic effects of ISSPT in A549 cells were associated with marked inhibition of Bel-xL expression in a dose-dependent manner, however the levels of Bcl-2 and Bax expression were not affected. ISSPT treatment also induced the expression of tumor suppressor p53 mRNA and inhibited the expression of caspase-3 mRNA. The previous and present results indicated that ISSPT-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression and the induction of apoptosis.

Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells

  • Liu, Qiuming;Cao, Yali;Zhou, Ping;Gui, Shimin;Wu, Xiaobo;Xia, Yong;Tu, Jianhong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.328-334
    • /
    • 2018
  • Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an $IC_{50}$ of $15{\mu}M$ and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of $p21^{WAF1/Cip1}$ and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.

RNA Interference-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth, Induces Apoptosis, and Increases the Chemosensitivity to 5-Fluorouracil in Renal Cancer Caki-1 Cells

  • Wang, Peng;Yin, Bo;Shan, Liping;Zhang, Hui;Cui, Jun;Zhang, Mo;Song, Yongsheng
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.857-864
    • /
    • 2014
  • Astrocyte elevated gene-1 (AEG-1) is a recently discovered oncogene that has been reported to be highly expressed in various types of malignant tumors, including renal cell carcinoma. However, the precise role of AEG-1 in renal cancer cell proliferation and apoptosis has not been clarified. In this study, we transfected the renal cancer cell line Caki-1 with a plasmid expressing AEG-1 short hairpin RNA (shRNA) and obtained cell colonies with stable knockdown of AEG-1. We found that AEG-1 down-regulation inhibited cell proliferation and colony formation and arrested cell cycle progression at the sub-G1 and G0/G1 phase. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E were significantly reduced following AEG-1 down-regulation. In addition, AEG-1 knockdown led to the appearance of apoptotic bodies in renal cancer cells, and the ratio of apoptotic cells significantly increased. Expression of the antiapoptotic factor Bcl-2 was dramatically reduced, whereas the pro-apoptotic factors Bax, caspase-3 and poly (ADPribose) polymerase (PARP) were significantly activated. Finally, AEG-1 knockdown in Caki-1 cells remarkably suppressed cell proliferation and enhanced cell apoptosis in response to 5-fluorouracil (5-FU) treatment, suggesting that AEG-1 inhibition sensitizes Caki-1 cells to 5-FU. Taken together, our data suggest that AEG-1 plays an important role in renal cancer formation and development and may be a potential target for future gene therapy for renal cell carcinoma.

Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways

  • Wu, Xuelun;Li, Shilun;Xue, Peng;Li, Yukun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.234-243
    • /
    • 2018
  • In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.