• Title/Summary/Keyword: BCL 6

Search Result 475, Processing Time 0.031 seconds

Simazine-induced Alteration of the Expression Levels of Apoptosis- and Steroidogenesis-regulating Genes in Testicular Cells (Simazine이 정소세포에서 Apoptosis와 Steroidogenesis 조절 유전자들의 발현에 미치는 영향)

  • Park, Ho-Oak;Ko, Jeong-Jae;Bae, Jee-Hyeon
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • Simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) is a triazine herbicide that has been applied worldwide including Korea for agricultural purposes. Simazine is the second most commonly detected pesticide in surfaceand ground-water in the United States, Europe and Australia. It has been shown that simazine is a potent endocrine disruptor in wildlife and laboratory animals. Although many endocrine disruptors can induce apoptosis in various types of cells, the effects of simazine on apoptosis and on the expression of Bcl-2 family genes are not known. Also it is unknown the effect of simazine on the expression of steroidogenesis-regulating genes in testicular cells. In this study, we investigated the effect of simazine on the expression levels of apoptosis- and steroidogenesis-regulating genes in testicular cells. We found that a low concentration of simazine can alter the mRNA expression levels of steroidogenesis-related genes and Bcl-2 family genes in mouse Sertoli cells and rat Leydig cells. Thus, our results suggest that simazine can disturb normal testicular development and reproductive function by altering the expression of genes that are critical for the regulation of apoptosis and steroidogenesis.

Polymorphisms of the NR3C1 gene in Korean children with nephrotic syndrome (한국 신증후군 환아에서 NR3C1 유전자 다형성 분석)

  • Cho, Hee Yeon;Choi, Hyun Jin;Lee, So Hee;Lee, Hyun Kyung;Kang, Hee Kyung;Ha, Il Soo;Choi, Yong;Cheong, Hae Il
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.11
    • /
    • pp.1260-1266
    • /
    • 2009
  • Purpose : Idiopathic nephrotic syndrome (NS) can be clinically classified as steroid-sensitive and steroid-resistant. The detailed mechanism of glucocorticoid action in NS is currently unknown. Methods : In this study, we investigated 3 known single nucleotide polymorphisms (SNPs) (ER22/23EK, N363S, and BclI) of the glucocorticoid receptor gene (the NR3C1 gene) in 190 children with NS using polymerase chain reaction-restriction fragment length polymorphism and analyzed the correlation between the genotypes and clinicopathologic features of the patients. Results : Eighty patients (42.1%) were initial steroid nonresponders, of which 31 (16.3% of the total) developed end-stage renal disease during follow-up. Renal biopsy findings of 133 patients were available, of which 36 (31.9%) showed minimal changes in NS and 77 (68.1%) had focal segmental glomerulosclerosis. The distribution of the BclI genotypes was comparable between the patient and control groups, and the G allele frequencies in both the groups were almost the same. The ER22/23EK and N363S genotypes were homogenous as ER/ER and NN, respectively, in all the patients and in 100 control subjects. The BclI genotype showed no correlation with the NS onset age, initial steroid responsiveness, renal pathologic findings, or progression to end-stage renal disease. Conclusion : These data suggested that the ER22/23EK, N363S, and BclI SNPs in the NR3C1 gene do not affect the development of NS, initial steroid responsiveness, renal pathologic lesion, and progression to end-stage renal disease in Korean children with NS.

MicroRNA-451 Inhibits Growth of Human Colorectal Carcinoma Cells via Downregulation of Pi3k/Akt Pathway

  • Li, Hong-Yan;Zhang, Yan;Cai, Jian-Hui;Bian, Hong-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3631-3634
    • /
    • 2013
  • MicroRNAs (MiRNAs) play important roles in coordinating a variety of cellular processes and abnormal expression has been linked to the occurrence of several cancers. The miRNA miR-451 is downregulated in colorectal carcinoma (CRC) cells, suggested by several research groups including our own. In this study, synthetic miR-451 mimics were transfected into the SW620 human CRC cell line using Lipofectamine 2000 and expression of miR-451 was analyzed by real time PCR, while expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2 was analyzed by Western blot, and cell growth was detected by MTT assay. In comparison to the controls, a significant increase in the expression of miR-451 was associated with significantly decreased expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2. The capacity of cell proliferation was significantly decreased by miR-451 expression, which also inhibited cell growth. Our study confirmed that miR-451 has a repressive role in CRC cells by inhibiting cell growth through down-regulating the P13K/AKT pathway.

Up-regulating of RASD1 and Apoptosis of DU-145 Human Prostate Cancer Cells Induced by Formononetin in Vitro

  • Liu, Xiao-Jia;Li, Yun-Qian;Chen, Qiu-Yue;Xiao, Sheng-Jun;Zeng, Si-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2835-2839
    • /
    • 2014
  • Prostate cancer is one of the most prevalent malignant cancers in men. The isoflavone formononetin is a main active component of red clover plants. In the present study, we assessed the effect of formononetin on human prostate cancer DU-145 cells in vitro, and elucidated posssible mechanisms. DU-145 cells were treated with different concentrations of formononetin and cell proliferation was assessed by MTT assay, cell apoptosis by Hoechst 33258 and flow cytometry, and protein levels of RASD1, Bcl-2 and Bax by Western blotting. The results showed that formononetin inhibited the proliferation of DU-145 cells in a dose-dependent manner. DU-145 cells treated with different concentrations of formononetin displayed obvious morphological changes of apoptosis under fluorescence microscopy. In addition, formononetin increased the proportion of early apoptotic DU-145 cells, down-regulated the protein levels of Bcl-2 and up-regulated those of RASD1 and Bax. The level of RASD1 reached its maximum at 48h post-treatment, and rapidly decreased thereafter. Together, we present evidence that formononetin triggered cell apoptosis through the mitochondrial apoptotic pathway by up-regulating RASD1.

Delphinidin inhibits cell proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines (Delphinidin이 인체 유방암세포 MDA-MB-231의세포증식 억제와 세포사멸 유도에 미치는 영향)

  • Seo, Eun Young
    • Journal of Nutrition and Health
    • /
    • v.46 no.6
    • /
    • pp.503-510
    • /
    • 2013
  • Breast cancer is the most common malignancy in women, both in the developed and developing countries. Anthocyanins are natural coloring of a multitude of foods, such as berries, grapes or cherries. Glycosides of the aglycons delphinidin represent the most abundant anthocyanins in fruits. Delphinidin has recently been reported to inhibit the growth of human tumor cell line. Also, delphinidin is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathion peroxidase activity. This study investigates the effects of delphinidin on protein ErbB2, ErbB3 and Akt expressions associated with cell proliferation and Bcl-2, Bax protein associated with cell apoptosis in MDA-MB-231 human breast cancer cell line. MDA-MB-231 cells were cultured with various concentrations (0, 5, 10, and $20{\mu}mol/L$) of delphinidin. Delphinidin inhibited breast cancer cell growth in a dose dependent manner (p < 0.05). ErbB2 and ErbB3 expressions were markdly lower $5{\mu}mol/L$ delphinidin (p < 0.05). In addition, total Akt and phosphorylated Akt levels were decreased dose-dependently in cells treated with delphinidin (p < 0.05). Futher, Bcl-2 levels were dose-dependently decreased and Bax expression was significantly increased in cells treated with delphinidin (p < 0.05). In conclusion, I have shown that delphinidin inhibits cell growth, proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines.

Apoptosis-Inducing Costunolide and a Novel Acyclic Monoterpene from the Stem Bark of Magnolia sieboldii

  • Park, Hee-Juhn;Kwon, Sang-Hyuk;Han, Yong-Nam;Choi, Jong-Won;Miyamoto, Ken-ichi;Lee, Sung-Ho;Lee, Kyung-Tae
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.342-348
    • /
    • 2001
  • In a course of obtaining more amount of bioactive costunolide and successive phytochemical isolation from Magnolia sieboldii (Magnoliaceae), a novel acyclic monoterpene 1 named deoxygeraniol (2,6(E)-dimethyl-2,6-octadiene) was isolated along with $\beta$-sitosterol 3-O-linoleate (2), trilinolein (3) and high amount of costunolide (4) in the pure state. The structure of compound 1 was determined on the basis of spectroscopic data. Costunolide was found to induce apoptotic cell death in a dose-dependent manner by nucleosomal DNA ladder and flow cytometric analysis. Immunoblot analysis showed that the level of the anti-apoptotic protein, Bcl-2, was decreased, whereas the cleavage of poly-(ADP-ribose) polymerase was, activated furthermore, the N-acetyl-L-cysteine antioxidant effectively prevented costunolide-induced cytotoxicity. These results suggest that costunolide-induced cell death is mediated by reactive oxygen species.

  • PDF

Apoptosis and Cell Cycle Arrest in Two Human Breast Cancer Cell Lines by Dieckol Isolated from Ecklonia cava

  • You, Sun Hyong;Kim, Jeong-Soo;Kim, Yong-Seok
    • Journal of Breast Disease
    • /
    • v.6 no.2
    • /
    • pp.39-45
    • /
    • 2018
  • Purpose: Dieckol, a phlorotannin compound isolated from Ecklonia cava, has been reported to have antioxidant, antiviral, anti-inflammatory, and anticancer properties. The purpose of this study was to investigate its anticancer effects on human breast cancer cell lines. Methods: In this study, the viability of two human breast cancer cell lines SK-BR-3 and MCF-7 was investigated after dieckol treatment using a WST-1 assay. Apoptosis and cell cycle distribution were assayed via Annexin V-fluorescein isothiocyanate and propidium iodide staining followed by flow cytometric analysis. Immunoblotting analysis was also performed using Bax/Bcl-2 to determine whether the dieckol-induced apoptosis was mediated by the intrinsic apoptotic pathway. Results: In a dose dependent manner, dieckol reduced the number of viable cells and increased the number of apoptotic cells. The effect of dieckol on the cell cycle distribution was analyzed using flow cytometry. Dieckol treatment significantly increased the percentage of MCF-7 and SK-BR-3 in the G2/M phase. Immunoblot analysis revealed that 24 hours of dieckol exposure increased the Bax/Bcl-2 ratio. Conclusion: Dieckol induced cytotoxicity in MCF-7 and SK-BR-3 human breast cancer cells inducing apoptosis and cell cycle arrest. Therefore, it is suggested that dieckol may be a potential therapeutic agent for breast cancer.

Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Apoptosis in the Rat Epididymis (흰쥐 부정소에서의 세포자연사에 미치는 Ethane 1,2-Dimethane Sulfonate(EDS)의 효과)

  • Son, Hyeok-Jun;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2006
  • Ethane 1,2-Dimethane sulfonate(EDS), a toxin which specifically kills Leydig cells(LC), has been widely used to prepare the reversible testosterone(T) depletion rat model. Previous studies including our own clearly demonstrated that the dramatic weight loss of the T-dependent accessory sex organs such as epididymis and seminal vesicle in this 'LC knock-out' rats. These weight loss could be derived from massive and abrupt death of the cells via apoptotic process. The present study was performed to test the effect of EDS administration on the expression of some apoptotic genes in the rat epididymis. Adult male Sprague-Dawley rats($300{\sim}350$ g B.W.) were injected with single dose of EDS(75 mg/kg, i.p.) and sacrificed on Weeks 0, 1, 2, 3, 4, 5, 6 and 7. Tissue weights and the numbers of the epididymal sperm were measured. The transcriptional activities of the bcl-2, bax, Fas and Fas ligand(Fas-L) were evaluated by semi-quantitative RT-PCR. As expected, the weights and the sperm counts of epididymis declined progressively after the EDS treatment during Week 1 and 2. These decrements were discontinued with a gradual return towards normal during Weeks $5{\sim}7$, although the maximal recoveries of the epididymal weights(71%) and sperm count(38%) were subnormal on Week 7. The initial level of bcl-2 transcripts persisted to Week 6 then elevated significantly on Week 7. The level of bax transcripts significantly decreased on Week 6, and no remarkable change was found in the rest of the experimental period. The transcripts for the Fas in epididymis elevated during Weeks $1{\sim}2$, returned to normal on Week 3, and the level persisted to the Week 7. Similarly, the level of Fas-L transcripts elevated during Weeks $1{\sim}3$ and returned to normal after Week 4. Our results demonstrated the transient T depletion by EDS administration could induce the changes in expression of the apoptotic genes in rat epididymis. The activation of Fas and Fas-L in the epididymis of EDS-treated rats might be responsible for the initial apototic process and consequently the tissue damage and the sperm loss. Future studies will attempt to determine the precise molecular mechanism(s) of apoptosis in the rat epididymis.

  • PDF

Analysis of the Apoptotic Mechanisms of Snake Venom Toxin on Inflammation-induced HaCaT Cell-line

  • Chun, Youl Woong;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Objectives : In this study, the roles of Interleukin (IL)-4 and Signal transducer and activator of transcription 6 (STAT6), which have been reported to play a role in the pathogenesis of inflammation and cancer, were evaluated in snake venom toxin (SVT)-induced apoptosis. Methods : Inflammation was induced in human HaCaT kerationocytes, by lipopolysaccharide (LPS; $1{\mu}g/mL$) or tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), followed by treatment with SVT (0, 1, or $2{\mu}g/mL$). Cell viability was assessed by MTT assays after 24 h, and the expression of levels of IL-4, STAT6, and the apoptosis-related proteins p53, Bax, and Bcl-2 were evaluated by western blotting. Electro mobility shift assays (EMSAs) were performed to evaluate the DNA binding capacity of STAT6. Results : MTT assays showed that inflammation-induced growth of HaCaT cells following LPS or TNF-${\alpha}$ stimulation was inhibited by SVT. Western blot analysis showed that p53 and Bax, which promote apoptosis, were increased, whereas that of Bcl-2, an anti-apoptotic protein, was decreased in a concentration-dependent manner in LPS- or TNF-${\alpha}$-induced HaCaT cells following treatment with SVT. Moreover, following treatment of HaCaT cells with LPS, IL-4 concentrations were increased, and treatment with SVT further increased IL-4 expression in a concentration-dependent manner. Western blotting and EMSAs showed that the phosphorylated form of STAT6 was increased in HaCaT cells in the context of LPS- or TNF-${\alpha}$-induced inflammation in a concentration-dependent manner, concomitant with an increase in the DNA binding activity of STAT6. Conclusion : SVT can effectively promote apoptosis in HaCaT cells in the presence of inflammation through a pathway involving IL-4 and STAT6.

Inhibitory Effect of Resveratrol on Lipopolysaccharide-induced p21 (WAF1/CIP1) and Bax Expression in Astroglioma C6 Cells (C6 신경교세포에서 lipopolysaccharide에 의한 p21 (WAF1/CIP1) 및 Bax의 발현증가에 미치는 resveratrol의 영향)

  • Kim, Young-Ae;Lim, Sun-Young;Rhee, Sook-Hee;Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.124-129
    • /
    • 2005
  • Resveratrol, a phytoalexin found at high levels in grapes and in grape products such as red wine, has been reported to possess a wide range of biological and pharmacological activities including anti-oxident, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects, but its molecular mechanism is poorly understood. In this study, we examined the effects of resveratrol on lipopolysaccharide (LPS)-induced growth inhibitory activity and cell growth-regulatory gene products in astroglioma C6 cells to elucidate its possible mechanism for anti-cytotoxicity. It is shown that LPS induced time-dependent growth inhibition and morphological changes of C6 cells, which were recovered by pre-treatment with resveratrol. The anti-proliferative effect of LPS was associated with the induction of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAF1/CIP1) expression assessed by RT-PCR and Western blot analysis in time-dependent manner in C6 cells. In addition, the pro-apoptotic Bax expression was also up-regulated in LPS-treated C6 cells without alteration of anti-apoptotic Bcl-2 and Bcl-XL expression. However, resveratrol significantly inhibited LPS-induced p53, p21 and Bax levels, suggesting that the modulation of p53, p21 and Bax levels could be one of the possible pathways by which resveratrol functions as anti-cytotoxic agent.