• Title/Summary/Keyword: BCJR decoding

Search Result 19, Processing Time 0.02 seconds

Joint Demodulation and Decoding System for FTN (FTN 시스템을 위한 동시 복조 및 복호 기법)

  • Kang, Donghoon;Oh, Wangrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • In this paper, we propose an efficient joint demodulation and decoding scheme for FTN (Faster than Nyquist) systems. Several previous works have demonstrated that ISI (Inter Symbol Interference) cancellation schemes based on BCJR (Bahl-Cocke-Jelinek-Raviv) algorithm are suitable for FTN systems. Unfortunately, required complexity of the previous ISI cancellation schemes is very high, especially when a multi-level modulation scheme is employed. In this paper, we propose a joint demodulation and decoding scheme for FTN systems with an iteratively decodable channel coding scheme and a multi-level modulation. Compared with the previously proposed schemes, the proposed scheme not only offers reliable performance but also requires relatively low complexity. Also, the proposed scheme can be easily applied to the FTN system with a multi-level modulation with a minor modification.

An Enhanced MELP Vocoder in Noise Environments (MELP 보코더의 잡음성능 개선)

  • 전용억;전병민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1C
    • /
    • pp.81-89
    • /
    • 2003
  • For improving the performance of noise suppression in tactical communication environments, an enhanced MELP vocoder is suggested, in which an acoustic noise suppressor is integrated into the front end of the MELP algorithm, and an FEC code into the channel side of the MELP algorithm. The acoustic noise suppressor is the modified IS-127 EVRC noise suppressor which is adapted for the MELP vocoder. As for FEC, the turbo code, which consists of rate-113 encoding and BCJR-MAP decoding algorithm, is utilized. In acoustic noise environments, the lower the SNR becomes, the more the effects of noise suppression is increased. Moreover, The suggested system has greater noise suppression effects in stationary noise than in non-stationary noise, and shows its superiority by 0.24 in MOS test to the original MELP vocoder. When the interleave size is one MELP frame, BER 10-6 is accomplished at channel bit SNR 4.2 ㏈. The iteration of decoding at 3 times is suboptimal in its complexity vs. performance. Synthetic quality is realized as more than MOS 2.5 at channel bit SNR 2 ㏈ in subjective voice quality test, when the interleave size is one MELP frame and the iteration of decoding is more than 3 times.

Performance analysis of turbo codes based on underwater experimental data (수중 실험 데이터 기반 터보 부호 성능 분석)

  • Sung, Ha-Hyun;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.45-49
    • /
    • 2016
  • The performance of underwater acoustic communication systems is sensitive to inter-symbol interference caused by delay spread developed from multipath signal propagation. The multipath nature of underwater channels causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Of the various iterative coding schemes, turbo code and convolutional code based on the BCJR algorithm have recently dominated this application. In this study, the performance of iterative codes based on turbo equalizers with equivalent coding rates and similar code word lengths were analyzed. Underwater acoustic communication system experiments using these two coding techniques were conducted on Kyeong-chun Lake in Munkyeong City. The distance between the transmitter and receiver was 400 m, and the data transfer rate was 1 Kbps. The experimental results revealed that the performance of turbo codes is better for channeling than that of convolutional codes that use a BCJR decoding algorithm.

Turbo Equalization for Covert communication in Underwater Channel (터보등화를 이용한 직접대역확산통신 기반의 은밀 수중통신 성능분석)

  • Ahn, Tae-Seok;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1422-1430
    • /
    • 2016
  • Researches for oceans are limited to military purpose such as underwater sound detection and tracking system. Underwater acoustic communications with low-probability-of-interception (LPI) covert characteristics were received much attention recently. Covert communications are conducted at a low received signal-to-noise ratio to prevent interception or detection by an eavesdropper. This paper proposed optimal covert communication model based on direct sequence spread spectrum for underwater environments. Spread spectrum signals may be used for data transmission on underwater acoustic channels to achieve reliable transmission by suppressing the detrimental effect of interference and self-interference due to jamming and multipath propagation. The characteristics of the underwater acoustic channel present special problems in the design of covert communication systems. To improve performance and probability of interception, we applied BCJR(Bahl, Cocke, Jelinek, Raviv) decoding method and the direct sequence spread spectrum technology in low SNR. Also, we compared the performance between conventional model and proposed model based on turbo equalization by simulation and lake experiment.

A study on efficient integration model of satellite and underwater communication for improving throughput efficiency (전송효율 향상을 위한 위성 및 수중 통신의 효율적인 융합 모델 연구)

  • Baek, Chang-Uk;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.535-541
    • /
    • 2016
  • In this paper, we analyzed efficient decoding scheme with FTN(Faster than Nyquist) method that is transmission method faster than Nyquist theory and increase the throughput. Applying the FTN method to satellite and underwater communication, we proposed an efficient transceiver model. To minimize ISI(Inter-Symbol Interference) induced by FTN signal, turbo equalization algorithms that iteratively exchange probabilistic information between Viterbi equalizer based on BCJR algorithm and LDPC decoder are used in satellite communication. In others, for underwater communication, DFE equalizer and LDPC decoder are concatenated to improve performance.

A Study on layered Space Time Trellis codes for MIMO system based on Iterative Decoding Algorithm (MIMO 시스템에서 반복 복호 알고리즘 기반의 계층적 시공간 부호화 방식 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.845-849
    • /
    • 2012
  • The next-generation wireless communication requires fast transmission speeds with various services and high reliability. In order to satisfy these needs we study MIMO system used layered space time coded system (LST) combining space time trellis codes (STTC) with turbo codes. In LST, two codes that are inner and outer codes are concatenated in the serial fashion. The inner codes are turbo Pi codes suggested in DVB-RCS NG system, and outer codes are STTC codes proposed by Blum. The interleaver technique is used to efficiently combine two codes. And we proposed and simulated that a full iteration method between turbo decoder and BCJR decoder to improve the performance instead of only processing inner-iteration turbo decoder. The simulation results of proposed effective layered method show improving BER performance about 1.3~1.5dB than conventional one.

A Study on Turbo Equalization for MIMO Systems Based on LDPC Codes (MIMO 시스템에서 LDPC 부호 기반의 터보등화 방식 연구)

  • Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.504-511
    • /
    • 2016
  • In this paper, MIMO system based on turbo equalization techniques which LDPC codes were outer code and space time trellis codes (STTC) were employed as an inner code are studied. LDPC decoder and STTC decoder are connected through the interleaving and de-interleaving that updates each other's information repeatedly. In conventional turbo equalization of MIMO system, BCJR decoder which decodes STTC coded bits required two-bit wise decoding processing. Therefore duo-binary turbo codes are optimal for MIMO system combined with STTC codes. However a LDPC decoder requires bit unit processing, because LDPC codes can't be applied to these system. Therefore this paper proposed turbo equalization for MIMO system based on LDPC codes combined with STTC codes. By the simulation results, we confirmed performance of proposed turbo equalization model was improved about 0.6dB than that of conventional LDPC codes.

An Efficient Receiver Structure Based on PN Performance in Underwater Acoustic Communications (수중음향통신에서 PN 성능 기반의 효율적인 수신 구조)

  • Baek, Chang-Uk;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.173-180
    • /
    • 2017
  • Underwater communications are degraded as a result of inter symbol interference in multipath channels. Therefore, a channel coding scheme is essential for underwater communications. Packets consist of a PN sequence and a data field, and the uncoded PN sequence is used to estimate the frequency and phase offset using a Doppler and phase estimation algorithm. The estimated frequency and phase offset are fed to a coded data field to compensate for the Doppler and phase offset. The PN sequence is generally utilized to acquire the synchronization information, and the bit error rate of an uncoded PN sequence predicts the performance of the coded data field. To ensure few errors, we resort to powerful BCJR decoding algorithms of convolutional codes with rates of 1/2, 2/3, and 3/4. We use this powerful channel coding algorithm to present an efficient receiver structure based on the relation between the bit error of the uncoded PN sequence and coded data field in computer simulations and lake experiments.

Soft-Input Soft-Output Multiple Symbol Detection for Ultra-Wideband Systems

  • Wang, Chanfei;Gao, Hui;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2614-2632
    • /
    • 2015
  • A multiple symbol detection (MSD) algorithm is proposed relying on soft information for ultra-wideband systems, where differential space-time block code is employed. The proposed algorithm aims to calculate a posteriori probabilities (APP) of information symbols, where a forward and backward message passing mechanism is implemented based on the BCJR algorithm. Specifically, an MSD metric is analyzed and performed for serving the APP model. Furthermore, an autocorrelation sampling is employed to exploit signals dependencies among different symbols, where the observation window slides one symbol each time. With the aid of the bidirectional message passing mechanism and the proposed sampling approach, the proposed MSD algorithm achieves a better detection performance as compared with the existing MSD. In addition, when the proposed MSD is exploited in conjunction with channel decoding, an iterative soft-input soft-output MSD approach is obtained. Finally, simulations demonstrate that the proposed approaches improve detection performance significantly.