DOI QR코드

DOI QR Code

A study on efficient integration model of satellite and underwater communication for improving throughput efficiency

전송효율 향상을 위한 위성 및 수중 통신의 효율적인 융합 모델 연구

  • Baek, Chang-Uk (Department of Radio Communication Engineering, Korea Maritime and Ocean University) ;
  • Jung, Ji-Won (Department of Radio Communication Engineering, Korea Maritime and Ocean University)
  • Received : 2016.02.19
  • Accepted : 2016.05.18
  • Published : 2016.07.31

Abstract

In this paper, we analyzed efficient decoding scheme with FTN(Faster than Nyquist) method that is transmission method faster than Nyquist theory and increase the throughput. Applying the FTN method to satellite and underwater communication, we proposed an efficient transceiver model. To minimize ISI(Inter-Symbol Interference) induced by FTN signal, turbo equalization algorithms that iteratively exchange probabilistic information between Viterbi equalizer based on BCJR algorithm and LDPC decoder are used in satellite communication. In others, for underwater communication, DFE equalizer and LDPC decoder are concatenated to improve performance.

본 논문은 인접 심볼 간의 간섭이 발생하지 않는 최대 데이터 전송률인 Nyquist 속도 보다 빠르게 데이터를 전송하여 전송량을 증가시키는 FTN(Faster Than Nyquist) 기법을 위성 및 수중 통신의 융합 시스템에 적용하여 효율적인 송수신 모델을 제안한다. FTN 신호 전송 시 발생하는 ISI(Inter-Symbol Interference)를 최소화하기 위해 위성통신에서는 BCJR 기법을 이용한 비터비 등화기와 LDPC 복호기간의 반복으로 이루어진 터보 등화 기법을 이용하여 복호하며, 수중통신에서는 DFE 등화기와 LDPC 복호기와 연접한 터보등화 기법을 적용하여 각 노드에서의 성능 향상을 확인할 수 있었다.

Keywords

References

  1. U. S. Kim, "Concept of tactical data link employment and next C4ISR system," The Quarterly Journal of Defense Policy Studies, pp. 49-83, 2006 (in Korean).
  2. D. J. C. Mackay and R. M. Neal, "Near shannon limit performance of low-density parity-check codes," Electronics Letters, vol. 32, pp. 1645-1646, 1997.
  3. I. Lee, D. Chang, and D. Oh, "Multi-level modulation LDPC decoding algorithm for new generation DVB-S2 system," Proceedings of the 24th AIAA International Communications Satellite Systems Conference, pp. 1-4, 2006.
  4. A. D. Liveris and C. N. Georghiades, "Exploiting faster-than-Nyquist signaling," IEEE Transactions on Communications, vol. 51, no. 9, pp. 1502-1511, 2003. https://doi.org/10.1109/TCOMM.2003.816943
  5. F. Rusek and J. B. Anderson, "Multistream faster than nyquist signaling." IEEE Transactions on Communications, vol. 57, no. 5, pp. 1329-1340, 2009. https://doi.org/10.1109/TCOMM.2009.05.070224
  6. J. E. Mazo, "Faster than nyquist signaling," Bell System Technical Journal, vol. 54, no. 8, pp. 1451-1462, 1975. https://doi.org/10.1002/j.1538-7305.1975.tb02043.x
  7. D. Dasalukunte, F. Rusek, and V. Owall, "An iterative decoder for multicarrier faster-than-Nyquist signaling systems," Proceedings of the 2010 IEEE International Conference on Communications (ICC), pp. 1-5, 2010.
  8. A. Prlja and J. B. Anderson, "Reduced-complexity receivers for strongly narrowband intersymbol interference introduced by faster-than-Nyquist signaling," IEEE Transactions on Communications, vol. 60, no. 9, pp. 2591-601, 2012. https://doi.org/10.1109/TCOMM.2012.070912.110296
  9. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate," IEEE Transactions on Information Theory, vol. IT-20, no. 2, pp. 284-287, 1974.
  10. J. B. Anderson, A. Prlja, and F. Rusek, "New reduced state space BCJR algorithms for the ISI channel," Proceedings of the IEEE International Symposium on Information Theory, pp. 889-893, 2009.
  11. T. H. Kim, I. K. Lee, and J. W. Jung "A study on efficient viterbi equalizer in FTN channel," Journal of Korea Institute of Information and Communication Engineering, vol. 18, no. 6, pp. 1323-1329, 2014 (in Korean). https://doi.org/10.6109/jkiice.2014.18.6.1323
  12. C. Douillard, M. Jezequel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, "Iterative correction of intersymbol interference: turbo equalization," European Transactions on Telecommunications, vol. 6, no. 5, pp. 507-511, 1995. https://doi.org/10.1002/ett.4460060506
  13. J. B. Anderson and A. Prlja, "Turbo equalization and an M-BCJR algorithm for strongly narrowband intersymbol interference," Proceedings of the 2010 International Symposium on Information Theory and its Applications (ISITA), pp. 261-266, 2010.
  14. D. B. Kilfoyle and A. B. Baggeroer, "The State of the Art in Underwater Acoustic Telemetry," IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 4-27, 2000. https://doi.org/10.1109/48.820733
  15. M. Stojanovic, J. Catipovic, and J. Proakis, "Phase coherent digital communications for underwater acoustic channels," IEEE Journal of Oceanic Engineering, vol. 19, no. 1, pp. 100-111, 1994. https://doi.org/10.1109/48.289455
  16. K. Berberdis, T. Rontogiannis, and S. Theodoridis, "Efficient block implementation of the LMS based DFE," Proceeding of the 13th International Conference on Digital Signal Processing, vol. 1, pp. 143-146, 1997.
  17. J. Salz, "Optimum mean-square decision feedback equalization," Bell System Technical Journal, vol. 52, no. 8, pp. 1341-1373, 1973. https://doi.org/10.1002/j.1538-7305.1973.tb02023.x