• Title/Summary/Keyword: B3LYP/6-31+G

Search Result 92, Processing Time 0.025 seconds

Comparison of Structural Types of Proline Pentamer by Quantum Chemical Calculation (QCC)

  • Jae-Ho Sim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.323-329
    • /
    • 2023
  • In this study, Proline pentamer model was used to investigate change in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. L-Proline (LP, as an imino acid residue) pentamers having four conformation types [β: φ/ψ=t−/t+, α: φ/ψ=g−/g−, PPII: φ/ψ=g−/t+ and Plike: φ/ψ= g−/g+] were carried out by QCC [B3LYP/6-31G(d,p)]. The optimized structure and formation energy were examined for designated structure. In LP, P-like and PPII types did not change by optimization, and β types were transformed into PPII having no H-bond independently of the designated ψ values. PPII was more stable than P-like by about 2.2 kcal/mol/mu. The hydrogen bond distances of d2(4-6) type H-bonds were 1.94 - 2.00Å. In order to understand the processes of the transformations, the changes of φ/ψ, distances of NH-OC (dNH/CO) and formation energies (ΔE, kcal/mol/mu) were examined.

DFT Studies on the Proton Affinities of Oxazole (옥사졸의 양성자 친화도에 대한 DFT 연구)

  • Lee, Hyun-Mee;Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • The oxazole plays an important role in the binding of lexitropsin to the guanine-cytosine base pair from minor groove of DNA. The geometry optimization is performed with DFT calculations for the two possible conformations of the protonated oxazole. The proton affinities are calculated at B3LYP level of theory with 6-31G* basis set for the optimized geometry. It is found that the proton affinites of the conformations in which the oxazole nitrogen is the protonation center are greater than that of the conformations in which the oxazole oxygen is the protonation center. This result is in good agreement with molecular electrostatic potential (MEP) contour map. The proton affinities are also studied for various substituted oxazoles with the electron-donating and -withdrawing groups to estimate substitutent effect on the proton affinity at the hydrogen bonding site of the oxazoles. it is shown that the electron-donating substituents increase the proton affinity of oxazole, while the electron-withdrawing substituents decrease it.

EXPERIMENTAL AND AB INITIO CHARACTERIZATION OF THE ANHARMONICITY OF $v_s(OH)$ VIBRATION IN PHENOL DERIVATIVES

  • Boguslawa, Czarnik-Matusewicz;Rospenk, Maria;Koll, Aleksandern
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1274-1274
    • /
    • 2001
  • An anharmonicity is a fundamental quantity shaping the potential for stretching OH vibration in phenol and its derivatives. The phenomenon is examined both by experimental and theoretical methods. FT-IR and NIR spectra of series of phenols derivatives were measured in the range of fundamental and first two Overtones of $_{s}(OH)$ Vibrations in $CCl_4$ solutions. The electronic influence of substituents on the analyzed frequencies is discussed and correlated with $pK_{a}$ parameters. Ab initio MP2/6-31G(d,p) and B3LYP/6-31G(g,p) calculations of the potential for proton movement in OH group were performed. Equilibrium structures were also determined. The frequencies of fundamental and overtones were calculated by Numerov-type procedure. The results of calculations are compared with the experimental data. The best linear correlations were obtained for the results of MP2/6-31G(d,p) calculations. It was shown that some structural parameters are especially sensitive on substitution. The linear correlations were found between those parameters and spectroscopic data. The results of calculation are compared with available crystallographic data.

  • PDF

Determination of Atomic Structures and Relative Stabilities of Diadduct Regioisomers of C20X2 (X = H, F, Cl, Br, and OH) by the Hybrid Density-Functional B3LYP Method

  • Lee, Seol;Suh, Young-Sun;Hwang, Yong-Gyoo;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3372-3376
    • /
    • 2011
  • We have studied the relative stability and atomic structures of five $C_{20}X_2$ regioisomers obtained as diadducts of a $C_{20}$ cage (X = H, F, Cl, Br, and OH). All the regioisomers are geometric isomers, i.e., they differ in their spatial arrangement. Full-geometry optimizations of the regioisomers have been performed using the hybrid density-functional (B3LYP/6-31G(d, p)) method. Our results suggest that the cis-1 regioisomer (the 1,2-diadduct) is the most stable and that the second most stable is the trans-2 (1,13-diadduct) regioisomer, implying that the long-range interaction between the two adducts and the resonance effect are more pronounced than the diadduct-induced strain in the $C_{20}$ cage. The HOMO and LUMO characteristics of each regioisomer with the same symmetry of structural regioisomers except $C_{20}(OH)_2$ are topologically same. This suggests that by using an entirely different set of characteristic chemical reactions for each regioisomer, we can distinguish between the five regioisomers for each $C_{20}$ diadduct derivative.

DFT Studies on Two Novel Explosives Based on the Guanidine-Fused Bicyclic Structure

  • Jin, Xing-Hui;Hu, Bing-Cheng;Jia, Huan-Qing;Liu, Zu-Liang;Lu, Chun-Xu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1043-1049
    • /
    • 2014
  • Density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) theoretical level were performed for two novel explosives (compounds B and C) based on the guanidine-fused bicyclic skeleton $C_4N_6H_8$ (A). The heats of formation (HOFs) were calculated via isodesmic reaction. The detonation properties were evaluated by using the Kamlet-Jacobs equations. The bond dissociation energies (BDEs) for the thermolysis initiation bond were also analyzed to investigate the thermal stability. The results show that the compounds have high positive HOF values (B, 1064.68 $kJ{\cdot}mol^{-1}$; C, 724.02 $kJ{\cdot}mol^{-1}$), high detonation properties (${\rho}$, D and P values of 2.04 $g{\cdot}cm^{-3}$ and 2.21 $g{\cdot}cm^{-3}$, 9.98 $km{\cdot}s^{-1}$ and 10.99 $km{\cdot}s^{-1}$, 46.44 GPa and 59.91 Gpa, respectively) and meet the basic stability requirement. Additionally, feasible synthetic routes of the these high energy density compounds (HEDCs) were also proposed via retrosynthetic analysis.

Comparison of Structural Types of L-Alanine Pentamer by Quantum Chemical Calculation

  • Kobayashi, Minoru;Sim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • L-alanine (LA, as an amino acid residue) pentamer model was used to investigate changes in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. LA pentamers having four conformation types [𝛽: 𝜑/𝜓=t-/t+, 𝛼: 𝜑/𝜓=g-/g-, PPII: 𝜑/𝜓=g-/t+ and P-like: 𝜑/𝜓= g-/g+] were carried out by quantum chemical calculations (QCC) [B3LYP/6-31G(d,p)]. In LA, 𝛽, 𝛼, and P-like types did not change by optimization, having an intra-molecular hydrogen bond: NH⋯OC (H-bond), and PPII types in the absence of H-bond were transformed into P-like at the designated 𝜓 of 140°, and to 𝛽 at that of 160° or 175°. P-like and 𝛼 were about 0.5 kcal/mol/mu more stable than 𝛽. In order to understand the processes of the transformations, the changes of 𝜑/𝜓, distances of NH-OC (dNH/CO) and formation energies (𝜟E, kcal/mol/mu) were examined.

Transmission Substituent Effects through Five-Membered Heteroaromatic Rigns, Ⅱ. Deprotonation Equilibra of Phenol Analogues

  • Son, Chang Guk;Im, Seon Hui;Ri, Sun Gi;Kim, Chang Gon;Kim, Chan Gyeong;Lee, Ik Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.891-895
    • /
    • 2000
  • Transmission of substituent effects through 5-membered heteroaromaticrings isinvestigated theoretically at the RHF/6-31+G* and B3LYP/6-31+G* levelsusing the deprotonation equilibria of phenol analogues with heteroatoms Y = NH, O, PHand S. The incr ease in the resonance delocalization of the $\pilone-pair$ on the phe-nolic oxygen atom, $n\pi(O)$, accompanied with the deprotonation depends on the heteroatom Y,in the order NH < O < PH < S. This represents the $\pielectron$ accepting ability, or conversely reverse order of the $\pielectron$ donating ability of the $\pilone-pair$ on Y, $n\pi(Y).$ The transmission efficiency of substituenteffects is, however,in the reverse order NH > O > S, which represents the order of delocalizability of $n\pi(Y).$ A better correlation is obtained with ${\sigma}p$ - than with ${\sigma}p$ for the Hammett type plots with the positive slope, $\rho-$ > 0, of the magnitude in the same order as that for the delocalizability of $n\pi(Y).$ Thedeprotonation energy, ΔG = [G(PA) + G(H+)] -G(P), decreases with the increasein the extence delocalization in the order NH > O > PH > S.

Transmission of Substituent Effects through Five-Membered Heteroaromatic Rings. III. Addition Equilibria of Hydroxide Anion to Benzaldehyde Analogues

  • Son, Chang Guk;Jeon, Yeong A;Lee, Sun Gi;Kim, Chang Geon;Kim, Chan Gyeong;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1202-1206
    • /
    • 2000
  • Transmission of substituent effects through 5-membered heteroaromatic rings is investigated theoretically at the RHF/6-31+G and B3LYP/6-31+G levels using the equilibria for the $OH^- addition to five-membered heteroaromatic aldehydes (5MHA). The transmission efficiency (S) in 5MHA(A) increases in the order NH>O>S>PH but the order exactly reverses in 5MHA($T^-$). This is originated by the delocalizability of the ${\pi}$ lonepair on Y, $$n_\pi$(Y)$. A better correlation is obtained with ${\sigma}_p^-$ in the Hammett plots with positive slope, $p_z$ > 0, indicating that the substituent (Z) effects are not transmitted by a direct conjugation. The magnitude of $p_z$ for Y=NH is the largest among the heteroaromatic systems, which is consistent with the largest transmission efficiency change $({\Delta}S)$. The equilibria for the addition processes are favorable in the gas phase $({\Delta}G^o<0)$, which reverses to unfavorable in aqueous solution $({\Delta}G^o>0)$ due to the relatively large salvation energy of $OH^-$ in the initial state in aqueous solution. The orders of ${\Delta}G^o$ and $p_z$ in the gas phase are almost maintained in solution.

Synthesis of Some Novel Pyrimidine Derivatives and Investigation of their Electrochemical Behavior

  • Akbas, Esvet;Levent, Abdulkadir;Gumus, Selcuk;Sumer, Mehmet Rauf;Akyazi, Inci
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3632-3638
    • /
    • 2010
  • 2-Iminopyrimidines (1a-e) and 2-thioxopyrimidine (2) were synthesized using the Biginelli three component cyclocondensation reaction of an appropriate $\beta$-diketone, arylaldehyde, and guanidine (for 1a-e) or thiourea (for 2). The electrochemical properties of the novel systems were investigated by CV and DPV. Moreover, B3LYP/6-31G(d,p) method was applied to the present structures in order to gather some structural and physicochemical data.

Molecular Dynamics Simulation and Density Functional Theory Investigation for Thiacalix[4]biscrown and its Complexes with Alkali-Metal Cations

  • Hong, Joo-Yeon;Lee, Che-Wook;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.453-456
    • /
    • 2010
  • The structural and energetic preferences of thiacalix[4]biscrown-5 with and without alkali metal ions ($Na^+$, $K^+$, $Rb^+$, and $Cs^+$) have been theoretically investigated for the first time using molecular dynamic (MD) simulations and density functional theory (MPWB1K/6-31G(d)//B3LYP/6-31G(d)) methods. The formation of the metal ion complex by the host is mainly driven by the electrostatic attraction between crown-5 oxygens and a cation together with the minor contribution of the cation-$\pi$ interaction between two facing phenyl rings around the cation. The computed binding energies and the atomic charge distribution analysis for the metal binding complexes indicate the selectivity toward a potassium ion. The theoretical results herein explain the experimentally observed extractability order by this host towards various alkali metal ions. The physical nature and the driving forces for cation recognition by this host are discussed in detail.