• Title/Summary/Keyword: B16F1 melanoma

Search Result 329, Processing Time 0.028 seconds

Whitening improvement effect of Hermetia illucens larvae extracts (아메리카동애등에(Hermetia illucens) 유충 추출물의 미백개선 효과)

  • Park, Ji Yeong;Kim, Sun Young;Koo, Bonwoo;Kim, Eunsun;Kim, Yong-Soon;Park, Kwanho
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.883-890
    • /
    • 2022
  • The present study investigated the feasibility of using the ethanolic extract of Hermetia illucens larvae (HIE) as a whitening improvement material. In cell viability assays using B16F1 melanoma cells, no cytotoxicity was recorded up to 200 ㎍·mL-1 of HIE. Moreover, while tyrosinase inhibitory activity increased, melanin content decreased in a dose-dependent manner, indicating that HIE likely inhibited tyrosine-induced intracellular melanin biosynthesis in B16F1 melanoma cells. Therefore, HIE is expected to serve as a potent whitening improvement material.

Antimelanogenic Effect of Purpurogallin in Murine Melanoma Cells (마우스 흑색종세포에서 Purpurogallin의 멜라닌 생성 억제 효과)

  • Kim, Han-Hyuk;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1905-1911
    • /
    • 2015
  • Melanin is one of the most important factors affecting skin color. Melanogenesis is the bioprocess of melanin production by melanocytes in the skin and hair follicles and is mediated by several enzymes, such as tyrosinase, tyrosinase related protein (TRP)-1, and TRP-2. Convenient enzymatic transformation of the simple phenol pyrogallol with polyphenol oxidase originating from pear to an oxidative product, purpurogallin, was efficient. The structure of the pyrogallol oxidation product was identified on the basis of spectroscopic methods. The biotransformation product purpurogallin showed significant inhibitory effects against both melanin synthesis and tyrosinase activity in a dose-dependent manner in B16 melanoma cells. In addition, purpurogallin significantly attenuated melanin production by inhibiting TRP-1, and TRP-2 expression through modulation of their corresponding transcription factors, and microphthalamia- associated transcription factor in B16 cells. Consequently, purpurogallin derived from convenient enzymatic transformation of pyrogallol might be a beneficial material for reducing skin hyperpigmentation.

Antioxidant Effect of Nelumbo nucifera G. Leaf Extract and Inhibition of MITF, TRP-1, TRP-2, and Tyrosinase Expression in a B16F10 Melanoma Cell Line (연잎 추출물의 항산화 활성 및 멜라노마 세포(B16F10)에서 MITF, TRP-1, TRP-2, tyrosinase의 발현 저해 효과)

  • Yoo, Dan-Hee;Joo, Da-Hye;Lee, Soo-Yeon;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1115-1123
    • /
    • 2015
  • The purpose of this study was to investigate the potential of Nelumbo nucifera G. leaf (NNL) extract as a cosmetic additive. The electron-donating ability of the NNL extract at a concentration of 1,000 μg/ml was 67.83%. In xanthine oxidase, the inhibition effect of the NNL extract was 92.7% at the same concentration. For whitening effects, tyrosinase inhibition effect of NNL extract was 42.7% at a 1,000 μg/ml concentration. The cell toxicity of the NNL extract was examined in melanoma cells (B16F10) using a 3-[4, 5–dimethyl–thiazol–2–yl]-2, 5-diphenyl-tetrazoliumbromide (MTT) assay. The cell toxicity assay revealed that the NNL extract had a toxicity of 81.61% at a concentration of 1,000 μg/ml The microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), tyrosinase related protein-2 (TRP-2), and tyrosinase protein expression inhibitory effect by Western blot of NNL extract were measured by a Western blot at concentrations of 25, 50, and 100 μg/ml. At a 100 μg/ml concentration of the NNL extract, the expression of the MITF, TRP-1, TRP-2, and tyrosinase protein was decreased by 69.59%, 27.74%, 67.33%, and 67.78% respectively. The MITF, TRP-1, TRP-2 and tyrosinase mRNA expression inhibitory effect were measured by reverse transcription- polymerase chain reaction (PCR) at concentrations of 25, 50, and 100 μg/ml. GAPDH was used as a positive control. At a concentration of 100 μg/ml of the NNL extract, the expression of MITF, TRP-1, TRP-2, and tyrosinase mRNA was decreased by 67.51%, 71.36%, 85.74%, and 83.64%, respectively. These findings suggest that the NNL extract has antioxidant and whitening effects and that it has great potential as a cosmetic ingredient.

Inhibitory Effect of β-Glucan Extracted from Cauliflower Mushroom Sparassis crispa on Tyrosinase Activity and Melanin Synthesis (꽃송이버섯에서 추출한 β-glucan의 tyrosinase 활성과 멜라닌 합성 억제 효능)

  • Oh, Chul Hyun;Ku, Mi Jung;Lee, Yong Hwan
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.1019-1027
    • /
    • 2021
  • There are a lot of efforts to develop new compounds having skin whitening effect from natural products. Sparassis crispa is a medicinal mushroom containing more than 40% β-glucan, which exhibits anticancer and immunostimulating effects. The aim of this study was to assess the availability of β-glucan extracted from cauliflower mushroom S. crispa as a skin whitener through the evaluation of inhibitory effects of melanin synthesis and tyrosinase activity and their mechanisms. B16F1 cells were treated with S. crispa β-glucan (10, 100, and 1,000 ㎍/ml, respectively) and α-melanocyte stimulating hormone (α-MSH), simultaneously. Content of melanin synthesis and tyrosinase activity were determined. The expressions levels of tyrosinase, tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) were also measured by western blotting. Treatment with 10, 100 and 1,000 ㎍/ml S. crispa β-glucan and 200 nM α-MSH significantly decreased melanin synthesis by 13.9%, 18.7% and 39.5%, respectively, and tyrosinase activity by 15.6%, 26.9% and 43.2%, respectively, compared to the α-MSH alone group. In addition, S. crispa β-glucan inhibited expressions of tyrosinase, TRP-1, TRP-2 and MITF induced by α-MSH. These results indicated that S. crispa β-glucan inhibited MITF expression, thereby reducing tyrosinase expression and inhibiting melanin production in B16F1 melanoma cells. Therefore, S. crispa β-glucan might be available as a skin whitener.

Ethyl linoleate inhibits α-MSH-induced melanogenesis through Akt/GSK3β/β-catenin signal pathway

  • Ko, Gyeong-A;Kim Cho, Somi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2018
  • Ethyl linoleate is an unsaturated fatty acid used in many cosmetics for its various attributes, such as antibacterial and anti-inflammatory properties and clinically proven to be an effective anti-acne agent. In this study, we investigated the effect of ethyl linoleate on the melanogenesis and the mechanism underlying its action on melanogenesis in B16F10 murine melanoma cells. Our results revealed that ethyl linoleate significantly inhibited melanin content and intracellular tyrosinase activity in ${\alpha}$-MSH-induced B16F10 cells, but it did not directly inhibit activity of mushroom tyrosinase. Ethyl linoleate inhibited the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase related protein 1 (TRP1) in governing melanin pigment synthesis. We observed that ethyl linoleate inhibited phosphorylation of Akt and glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) and reduced the level of ${\beta}-catenin$, suggesting that ethyl linoleate inhibits melanogenesis through $Akt/GSK3{\beta}/{\beta}-catenin$ signal pathway. Therefore, we propose that ethyl linoleate may be useful as a safe whitening agent in cosmetic and a potential therapeutic agent for reducing skin hyperpigmentation in clinics.

Effects of Trichosanthes kirilowii Extract against Angiogenesis and Various Tumor Cells' Growth (천화분 추출물이 혈관신생 및 암세포성장에 미치는 영향)

  • Kim, Dong-Woo;Lee, Jong-Hoon;Yoo, Hwa-Seung;Cho, Jung-Hyo;Lee, Yeon-Weol;Son, Chang-Gue;Cho, Chong-Kwan
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.490-499
    • /
    • 2008
  • Objectives : This study was aimed to elucidate the effects of Trichosanthes kirilowii extract (TKE) on the angiogenesis and growth of tumor cells. Methods : Tube formation assay was performed by using human umbilical vein endothelial cells (HUVEC), and anchorage dependent colony assay was performed by using B16-F10 melanoma, Hep G2 and HT1080, CT-26 and SNU-1 cells. Results : For HUVEC, TKE at a level of more than 100 ${\mu}g/m{\ell}$ suppresses cell growth. For HUVEC at 100 ${\mu}g/m{\ell}$ and greater TKE density, the formation of tubes was suppressed in a dose-dependant manner. TKE controls the colony formations of B16-F10 melanoma cells, CT 26 cells, and Hep G2 cells, and its effect is proportional to density. In HT1080 cells and SNU-1 cells, formation is suppressed regardless of density. Conclusions : From these results, it could be concluded that TKE has significant properties on anti-angiogenesis and growth inhibiting of tumor cells. It is suggested that TKE will be a good candidate for new drugs or therapeutics for anti-angiogenesis.

  • PDF

Antioxidant, Anti-Melanogenic and Anti-Wrinkle Effects of Phellinus vaninii

  • Im, Kyung Hoan;Baek, Seung A;Choi, Jaehyuk;Lee, Tae Soo
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.494-505
    • /
    • 2019
  • In this study, the antioxidant, anti-xanthine oxidase, anti-melanogenic and anti-wrinkle effects of methanol (ME) and hot water (HE) extracts from the fruiting bodies of Phellinus vaninii were investigated. The 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging activity of 2.0 mg/mL HE (95.38%) was comparable to that of butylated hydroxytoluene (96.97%), the reference standard. The hydroxyl radical scavenging activities of ME (98.19%) and HE (97.55%) were higher than that of butylated hydroxytoluene (92.66%) at 2.0 mg/mL. Neither ME nor HE was cytotoxic to murine melanoma B16-F10 cells at 25-750 ㎍/mL. Although the xanthine oxidase (XO) inhibitory effects of ME and HE were significantly lower than that of allopurinol, the values were higher than 84 percent. The in vitro tyrosinase inhibitory activities of ME and HE were comparable to kojic acid at 2.0 mg/mL. The cellular tyrosinase and melanin synthetic activities of ME and HE on B16-F10 melanoma cells at 500 ㎍/mL were higher than arbutin, indicating that the inhibitory effects of arbutin on the tyrosinase and melanin synthesis were higher than those of ME and HE. The collagenase inhibitory activity of HE was comparable to EGCG at 2.0 mg/mL, however, the elastase inhibitory activity of ME and HE was lower than EGCG at the concentration tested. The study results demonstrated that the fruiting bodies of Ph. vaninii possessed good antioxidant, anti-xanthine oxidase, cell-free anti-tyrosinase, cellular anti-tyrosinase, anti-collagenase, and moderate anti-elastase activities, which might be used for the development of novel anti-gout, skin-whitening, and skin anti-wrinkle agents.

Lipoteichoic Acid Isolated from Lactobacillus plantarum Inhibits Melanogenesis in B16F10 Mouse Melanoma Cells

  • Kim, Hye Rim;Kim, Hangeun;Jung, Bong Jun;You, Ga Eun;Jang, Soojin;Chung, Dae Kyun
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2015
  • Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia- associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.

Nypa fruticans wurmb Inhibits Melanogenesis via cAMP/PKA/CREB Signaling Pathway in B16 F10 Cells

  • So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.54-54
    • /
    • 2021
  • The Melanoma Research Coalition reported melanoma affects humans of various races. This study was conducted to confirm the inhibitory effect of melanogenesis in B16 F10 cells of Nypa fruticans Wurmb of ethyl acetate fraction (NEF). Nypa fruticans Wurmb is an important component of the East Asian mangrove vegetation. It belongs to Araceae family. Traditionally, N. fruticans was used to treat various diseases such as asthma, sore throat, liver disease, a pain reliever, and can also be used as sedative and carminative. The present study, the inhibitory effect on melanogenesis was determined by Western blotting and RT-qPCR. The level of expression of tyrosinase, TRP-1, and TRP-2 is regulated by microphthalmia-associated transcription factor (MITF) and cAMP, and cAMP affects the activity of protein kinase A (PKA). Activated PKA stimulates the phosphorylation of cAMP-reactive element-binding protein (CREB) in the nucleus, thereby increasing the amount of MITF expression and enhancing melanogenesis. Western blotting and RT-qPCR analysis showed that NEF treatment decreased the expression of tyrosinase. Similarly, TRP-1 and TRP-2 levels were decreased, which were decreased significantly at compared with the untreated control. Also, NEF attenuated the IBMX mediated increase in the intracellular cAMP level and the phosphorylation of PKA. In conclusion, NEF significantly inhibited the expressions of melanogenesis through cAMP/PKA/CREB signaling pathways.

  • PDF

Antioxidant and Antimelanogenic Activities of Kimchi-Derived Limosilactobacillus fermentum JNU532 in B16F10 Melanoma Cells

  • Meng, Ziyao;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.990-998
    • /
    • 2021
  • Melanin is a natural skin pigment produced by specialized cells called melanocytes via a multistage biochemical pathway known as melanogenesis, involving the oxidation and polymerization of tyrosine. Melanogenesis is initiated upon exposure to ultraviolet (UV) radiation, causing the skin to darken, which protects skin cells from UVB radiation damage. However, the abnormal accumulation of melanin may lead to the development of certain skin diseases, including skin cancer. In this study, the antioxidant and antimelanogenic activities of the cell-free supernatant (CFS) of twenty strains were evaluated. Based on the results of 60% 2,2-diphenyl-1-picrylhydrazyl scavenging activity, 21% 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) scavenging capacity, and a 50% ascorbic acid equivalent ferric reducing antioxidant power value, Limosilactobacillus fermentum JNU532 was selected as the strain with the highest antioxidant potential. No cytotoxicity was observed in cells treated with the CFS of L. fermentum JNU532. Tyrosinase activity was reduced by 16.7% in CFS-treated B16F10 cells (but not in the cell-free system), with >23.2% reduction in melanin content upon treatment with the L. fermentum JNU532-derived CFS. The inhibitory effect of the L. fermentum JNU532-derived CFS on B16F10 cell melanogenesis pathways was investigated using quantitative reverse transcription polymerase chain reaction and western blotting. The inhibitory effects of the L. fermentum JNU532-derived CFS were mediated by inhibiting the transcription of TYR, TRP-1, TRP-2, and MITF and the protein expression of TYR, TRP-1, TRP-2, and MITF. Therefore, L. fermentum JNU532 may be considered a potentially useful, natural depigmentation agent.