• Title/Summary/Keyword: B-doped diamond

Search Result 16, Processing Time 0.026 seconds

PHOTOELECTRODEPOSITION OF COPPER ON BORON-DOPED DIAMOND FILMS: ITS APPLICATION TO CONDUCTIVE PATTERN FORMING ON DIAMOND AND DIAMOND PHOTOGRAPHIC PHENOMENON

  • Yoshihara, S.;Shinozaki, K.;Shirakashi, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.244-248
    • /
    • 1999
  • Photoelectrodeposition of copper on semiconductive B-doped diamond films was investigated. There are cleasr morphology differences between photodeposited copper and electrodeposited copper. Photoelecrodeposition proceeded as uniform 2-dimensional growth. On the other hand electrodeposition proceeded as scarce random deposition. By applying this effect we have succeeded in forming a conductive pattern on semiconductive B-doped diamond with the aid of a photo-mask. And it was suggested that the surface reforming caused by photoelectrochemical process could be easily detected by the following metal (copper) deosition method, which is demonstrated as 'Diamond photographic phenomenon'.

  • PDF

Electron field emission from various CVD diamond films

  • Usikubo, Koji;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.385-388
    • /
    • 1999
  • Electron field emission properties from various CVD diamond films were studied. Diamond films were synthesized by microwave plasma CVD at 1173K and at 673K substrates temperature and pulse microwave plasma CVD at 1173K. B-doped diamond film was synthesized by microwave plasma CVD at 1173K also. Estimation by SEM, both the non-doped diamond film and B-doped diamond film which were synthesized at 1173K substrate temperature were $2~3\mu\textrm{m}$ in diameter and nucleation densities were $10^{8}{\;}numbers/\textrm{cm}^2$ order. The diamond film synthesized at 673K was $0.2\mu\textrm{m}$ in diameter and nucleation densities was 109 numbers/cm2 order. The diamond film synthesized by pulse microwave plasma CVD at 1173K was $0.2\mu\textrm{m}$ in diameter and nucleation density was $10^{9}{\;}numbers/\textrm{cm}^2$ order either. From the result of electron field emission measurement, electron field emission at $20V/\mu\textrm{m}$ from CVD diamond film synthesized by pulse microwave plasma CVD was $37.3\mu\textrm{A}/\textrm{cm}^2$ and the diamond film showed the best field emission property comparison with other CVD diamond.

  • PDF

Detection of Bio-chemical by Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드 전극을 이용한 생체화학물질의 검출)

  • Kim, Gyu-Sik;Einaga, Y.;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.569-572
    • /
    • 2001
  • Selective. highly stable determination of epinephrine(adrenalin) was achieved in cyclic voltammetric measurement carried out at electrochemically treated conductive boron-doped diamond electrode. Boron-doped diamond electrodes were prepared on single crystal Si wafers by microwave plasma chemical vapor deposition and $B_{2}O_{3}$ was dissolved in acetone/methanol(9:1) mixture solution so that the B/C weight ratio ca. $10^{4}ppm$. Epinephrine is a kind of catecholamines, which secreted from adrenal marrow cells. The serious problem to detection of epinephrine is the interference phenomena of electroactive constituent. including AA. In this study. electrochemical treatment of BDD was carried out to discriminate between epinephrine and AA responses. Experimental results showed that the peak potential of AA oxidation shift to the positive direction and the oxidation peak of epinephrine was unchanged. The effect of electrochemical treatment was maintained up to 40hrs.

  • PDF

Detection of Bio-chemical by Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드 전극을 이용한 생계화학물질의 검출)

  • ;榮長 泰明;藤嶋 昭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.569-572
    • /
    • 2001
  • Selective, highly stable determination of epinephrine(adrenalin) was achieved in cyclic voltammetric measurement carried out at electrochemically treated conductive boron-doped diamond electrode. Boron-doped diamond electrodes were prepared on single crystal Si wafers by microwave plasma chemical vapor deposition and B$_2$O$_3$ was dissolved in acetone/methanol(1:1) mixture solution so that the B/C weight ratio ca. 10$^3$ppm.. Epinephrine is a kind of catecholamines, which secreted from adrenal marrow cells. The serious problem to detection of epinephrine is the interference phenomena of electroactive constituent, including AA. In this study, electrochemical treatment of BDD was carried out to discriminate between epinephrine and AA responses. Experimental results showed that the peak potential of AA oxidation shift to the positive direction and the oxidation peak of epinephrine was unchanged. The effect of electrochemical treatment was maintained up to 40hrs.

  • PDF

Detection of Bio-chemical by Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드 전극을 이용한 생체화학물질의 검출)

  • Lee, Eun-Ju;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.167-169
    • /
    • 2002
  • Selective, highly stable determination of serotonin was achieved in cyclic voltammetric measurement carried out at electrochemically treated conductive boron-doped diamond electrode. Boron-doped diamond electrodes were prepared on single crystal Si wafers by microwave plasma chemical vapor deposition and $B_2O_3$ was dissolved in acetone/methanol(9:1) mixture solution so that the B/C weight ratio ca. $10^4ppm$. Serotonin is a kind of indoleamines, which secreted from adrenal marrow cells. The serious problem to detection of serotonin is the interference phenomena of electroactive constituent, including AA. In this study, electrochemical treatment of HDD was carried out to discriminate between serotonin and AA responses. Experimental results showed that the peak potential of AA oxidation shift to the positive direction and the oxidation peak of serotonin was unchanged.

  • PDF

Study on the growth of boron-doped diamond films in relation to pretreatment processes (전처리 공정에 따른 보론 첨가 다이아몬드 박막의 성장 거동)

  • Mi Young You;Song Hyeon Lee;Pung-Keun Song
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • The study investigated the impact of substrate pretreatment on depositing high-quality B-doped diamond (BDD) thin films using the HFCVD method. Films were deposited on Si and Nb substrates after sanding and seeding. Despite identical sanding conditions, BDD films formed faster on Nb due to even diamond seed distribution. Post-deposition, film average roughness (Ra) remained similar to substrate Ra, but higher substrate Ra led to decreased crystallinity. Nb substrate with 0.83 ㎛ Ra exhibited faster crystal growth due to dense, evenly distributed diamond seeds. BDD film on Nb with 0.83 ㎛ Ra showed a wide, stable potential window (2.8 eV) in CV results and a prominent 1332 cm-1 diamond peak in Raman spectroscopy, indicating high quality. The findings underscore the critical role of substrate pretreatment in achieving high-quality BDD film fabrication, crucial for applications demanding robust p-type semiconductors with superior electrical properties.

Field emission properties of boron-doped diamond film (보론-도핑된 다이아몬드 박막의 전계방출 특성)

  • 강은아;최병구;노승정
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • Deposition conditions of diamond thin films were optimized using hot-filament chemical vapor deposition (HFCVD). Boron-doped diamond thin films with varying boron densities were then fabricated using B4C solid pellets. Current-voltage responses and field emission currents were measured to test the characteristics of field emission display (FED). With the increase of boron doping, the crystal size of diamond decreased slightly, but its quality was not changed significantly in case of small doping. The I-V characterization was performed for Al/diamond/p-Si, and the current of doped diamond film was increased $10^4\sim10^5$ times as compared with that of undoped film. In the field emission properties, the electrons were emitted with low electric field with the increase of doping, while the emission current increased. The onset-field of electron emission was 15.5 V/$\mu\textrm{m}$ for 2 pellets, 13.6 V/$\mu\textrm{m}$ for 3 pellets and 11.1 V/$\mu\textrm{m}$ for 4 pellets. With the incorporation of boron, the slope of Fowler-Nordheim graph was decreased, revealing that the electron emission behavior was improved with the decrease of the effective barrier energy.

  • PDF

Preparation of Diamond Thin film for Electric Device and Crystalline Growth (전자 디바이스용 다이아몬드 박막의 제조 및 결정성장 특성)

  • Kim, Gru-Sik;Park, Soo-Gil;Son, Won-Keun;Fujishiama, Akira
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1720-1723
    • /
    • 2000
  • Boron doped conducting diamond thin film were grown on Si substrate by microwave plasma chemical vapor deposition from a gaseous feed of hydrogen, acetone/methanol and solid boron. The doping level of boron was controlled from 0ppm to $10^4$ppm (B/C). The Si substrate was tilted ca. 10$^{\circ}$ to make Si substrate have different height and temperature. Experimental results show that same condition but different temperature of Si substrate by height made different crystalline of diamond thin film. There were appeared 3$\sim$4 step of different crystalline morphology of diamond. To characterize the boron-doped diamond thin film, Raman spectroscopy was used for identification of crystallinity. To survey surface morphology, microscope was used. Grain size was changed gradually by different temperature due to different height. The Raman spectrum of film exhibited a sharp peak at 1334$cm^{-1}$, which is characteristic of crystalline diamond. The lower position of diamond film position, the more non-diamond component peak appeared near 1550$cm^{-1}$.

  • PDF

Crystalline Growth Properties of Diamond Thin Film Prepared by MPCVD

  • Park Soo-Gil;Kim Gyu-Sik;Einaga Yasuaki;Fujishima Akira
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.200-203
    • /
    • 2000
  • Boron doped conducting diamond thin films were grown on Si substrate by microwave plasma chemical vapor deposition from a gaseous feed of hydrogen, acetone/methanol and solid boron. The doping level of boron was ca. $10^2ppm\;(B/C)$. The Si substrate was tilted ca. $10^{\circ}$ to make Si substrate, which have different height and temperature. Experimental results showed that different crystalline of diamond thin films were made by different temperature of Si substrate. There appeared $3\~4$ steps of different crystalline morphology of diamond. To characterize the boron-doped diamond thin film, Raman spectroscopy was used for identification of crystallinity. To survey surface morphology, microscope was used. Grain size was changed gradually by different temperature due to different height. The Raman spectrum of film exhibited a sharp peak at $1334cm^{-1}$, which is characteristic of crystalline diamond. The lower position of diamond film position, the more non-diamond component peak appeared near $1550 cm^{-1}$.