• Title/Summary/Keyword: B-doped

Search Result 491, Processing Time 0.033 seconds

Properties of Al-doped ZnO Transparent Conducting Oxide Films Deposited with Ar Flow Rate by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 증착된 Al 도핑된 ZnO 투명 전도 산화막의 Ar 유량에 따른 특성)

  • Yi, I.H.;Kim, D.K.;Kim, H.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.206-210
    • /
    • 2010
  • Al-doped ZnO thin films were deposited with various Ar flow rate by RF magnetron sputtering, and theire properties were studied. A high-quality thin film was obtained by controlling the Ar flow rate, and the influence of the Ar flow rate on the Al-doped ZnO thin film was confirmed. In all Al-doped ZnO thin films, light transmittance had above 80%. Through Hall measurement and X-ray photoelectron spectrometer, the sample of 60 sccm, which had the lowest resistivity, showed the lower Al concentration. This result was attributed to oxygen vacancy rather than Al concentration.

Cr-doped Tialite Pigments (크롬을 사용한 Tialite계 안료)

  • Kim, Yeon-Ju;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.515-519
    • /
    • 2011
  • The purpose of this study was to determine the optimal firing condition and composition for $Al_2TiO_5$ crystal, which is suitable for stable coloration in glazes at high temperatures, using $Cr_2O_3$ as chromophore for the synthesis of $Al_2TiO_5$ system pigments. $Al_2TiO_5$ has a high refractive index and good solubility of chromophore in the $Al_2TiO_5$ lattice, making this structure a good candidate for the development of new ceramic pigments. Pigments were synthesized by using $Al_2O_3$ and $TiO_2$ mainly. Various amounts of $Cr_2O_3$ such as 0.01, 0.02, 0.03, 0.04 and 0.05 mole were also added. Each compound was synthesized at $1300^{\circ}C$, $1400^{\circ}C$, and $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigments were analyzed by XRD, SEM, Raman spectroscopy, UV and UV-vis. The changes in color as the result of applying 6 wt% of the synthesized pigments to lime barium glaze were expressed as CIE-L*a*b* values. A $Cr_2O_3$ 0.03 mole doped $Al_2TiO_5$ brown pigment was successfully synthesize at $1400^{\circ}C$, and the values of CIE-L*a*b* parameters were L* = 44.62, a* = 3.10, and b* = 17.25. In the case of the pigment synthesized at $1500^{\circ}C$, the brown color was obtained at 0.01 mole and 0.02 mole $Cr_2O_3$, and the CIE-L*a*b* values were 55.34, 1.73, 28.64, and 49.39, 0.51, 21.33, respectively. At $1500^{\circ}C$, the maximum limit of solid solution was 0.03 mole $Cr_2O_3$. The glazed sample showed green color, and the values of the CIEL* a*b* parameters were L* = 45.69, a* = -0.98, and b* = 20.38.

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • Kim, Gyeong-Jung;Park, Jae-Hui;Hong, Seung-Hwi;Choe, Seok-Ho;Hwang, Hye-Hyeon;Jang, Jong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

Determination of Thermoluminescence Properties of MgB4O7 Doped with Dy3+, La3+ and Ho3+ for a Light Tracer Application (비화공식 예광탄 응용을 위한 Dy3+, La3+ 그리고 Ho3+이 도핑된 MgB4O7의 열 발광 특성 분석)

  • Park, Jinu;Kim, Nakyung;Choi, Jiwoon;Koh, Jaehyuk;Chin, Hee Sik;Jung, Duck Hyeong;Shin, Byungha
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.9-13
    • /
    • 2022
  • Bullets flying with a light from the back are called "tracers". Tracers are ignited by the combustion gas of the propellant and emit bright light that allows the shooter to visually trace the flight path. Therefore, tracers mark the firing point for allies to assist shooters to hit target quickly and accurately. Conventional tracers are constructed with a mixture of an oxidizing agent, raw metal, and organic fuel. Upon ignition, the inside of the gun can be easily contaminated by the by-products, which can lead to firearm failure during long-term shooting. Moreover, there is a fire risk such as forest fires due to residual flames at impact site. Therefore, it is necessary to develop non-combustion type luminous material; however, this material must still use the heat generated from the propellant, so-called "thermoluminescence (TL)". This study aims to compare the TL emission of Dy3+, La3+ and Ho3+ doped MgB4O7 phosphors prepared by solid state reaction. The crystal structures of samples were determined by X-ray diffraction and matched with the standard pattern of MgB4O7. Luminescence of various doses (200 ~ 15,000 Gy) of gamma irradiated Dy3+, La3+ and Ho3+ (at different concentrations of 5, 10, 15 and 20 %) doped MgB4O7 were recorded using a luminance/color meter. The intensity of TL yellowish (CIE x = 0.401 ~ 0.486, y = 0.410 ~ 0.488) emission became stronger as the temperature increased and the total gamma-ray dose increased.

Fabrication and Characterization of Ge/B-doped Optical Fiber for UV Poling Applications (UV 폴링용 Ge와 B가 첨가된 실리카 유리 광섬유 제조 및 특성 평가)

  • Kim, Bok-Hyeon;Ahn, Tae-Jun;Heo, Jong;Shin, Dong-Wook;Han, Won-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1158-1163
    • /
    • 2002
  • An Ge/B-doped optical fiber with high photosensitivity was fabricated to induce large second-order optical nonlinearity by UV poling. It was found that long period fiber gratings were inscribed on the fiber by the 248 nm KrF excimer laser irradiation with pulse energy of 116 mJ/$cm^2$ and pulse frequency of 10 Hz without hydrogen loading treatment. The photosensitivity was measured by use of the long period fiber grating pair method and the refractive index change of 3.3$10{\times}^{-3}$ was found to be induced in the core of the optical fiber by the KrF excimer laser irradiation of 8.67 kJ/$cm^2$. An H-shaped optical fiber was also fabricated for the UV poling through optimization of the fiber drawing condition.

Influence of Boron Content on the Thermoelectric Properties of p-type Si0.8Ge0.2 Alloy (Si0.8Ge0.2계 합금에서 열전특성에 미치는 B의 영향)

  • Hwang, Sung-Doo;Choi, Woo-Suk;Park, Ik-Min;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.272-276
    • /
    • 2007
  • P-type thermoelectric material $Si_{0.8}Ge_{0.2}$ was sintered by Hot Press process (HP) and the effect of boron ($0.25{\sim}2$ at%) addition on the thermoelectric properties were reported. To enhance the thermoelectric performances, the $Si_{0.8}Ge_{0.2}$, alloys were fabricated by mechanical alloying (MA) and HP. The carrier of p-type SiGe alloy was controlled by B-doping. The effect of sintering condition and thermoelectric properties were investigated. B-doped SiGe alloys exhibited positive seebeck coefficient. The electrical conductivity and thermal conductivity were increased at the small amount of boron content ($0.25{\sim}0.5$ at%). However, they were decreased over 0.5 at% boron content. As a result, the small addition of boron improved the Z value. The Z value of 0.5 at% B doped $Si_{0.8}Ge_{0.2}$ B alloy was $0.9{\times}10{-4}/K$, the highest value among the prepared alloys.

Influence of Substrate Bias Voltage on the Electrical and Optical Properties of IWO Thin Films (기판 인가 전압에 따른 IWO 박막의 전기적, 광학적 특성)

  • Jae-Wook Choi;Yeon-Hak Lee;Min-Sung Park;Young-Min Kong;Daeil Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.372-376
    • /
    • 2023
  • Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.