• Title/Summary/Keyword: B-스플라인 볼륨

Search Result 8, Processing Time 0.019 seconds

Method of Fast Interpolation of B-Spline Volumes for Reconstructing the Heterogeneous Model of Bones from CT Images (CT 영상에서 뼈의 불균질 모델 생성을 위한 B-스플라인 볼륨의 빠른 보간 방법)

  • Park, Jun Hong;Kim, Byung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.373-379
    • /
    • 2016
  • It is known that it is expedient to represent the distribution of the properties of a bone with complex heterogeneity as B-spline volume functions. For B-spline-based representation, the pixel values of CT images are interpolated by B-spline volume functions. However, the CT images of a bone are three-dimensional and very large, and hence a large amount of memory and long computation time for the interpolation are required. In this study, a method for resolving these problems is proposed. In the proposed method, the B-spline volume interpolation problem is simplified by using the uniformity of pixel spacing of the image and the properties of B-spline basis functions. This results in a reduction in computation time and the amount of memory used. The proposed method was implemented and it was verified that the computation time and the amount of memory used were reduced.

On B-spline Approximation for Representing Scattered Multivariate Data (비정렬 다변수 데이터의 B-스플라인 근사화 기법)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.921-931
    • /
    • 2011
  • This paper presents a data-fitting technique in which a B-spline hypervolume is used to approximate a given data set of scattered data samples. We describe the implementation of the data structure of a B-spline hypervolume, and we measure its memory size to show that the representation is compact. The proposed technique includes two algorithms. One is for the determination of the knot vectors of a B-spline hypervolume. The other is for the control points, which are determined by solving a linear least-squares minimization problem where the solution is independent of the data-set complexity. The proposed approach is demonstrated with various data-set configurations to reveal its performance in terms of approximation accuracy, memory use, and running time. In addition, we compare our approach with existing methods and present unconstrained optimization examples to show the potential for various applications.

High quality volume visualization using B-spline interpolation (B 스플라인 보간을 이용한 고화질 볼륨 가시화)

  • Shin, Yongha;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • Linear interpolation is a basic sampling method for volume visualization. This method generates good images but sometimes it is inferior to our high expectation because it is encouraged to produce high quality images in the medical applications. In this paper, B spline based tri-cubic interpolation is used for the re-sampling step. The conventional B spline is an approximation method which does not cross control points so that we moved the control points and the curve crosses the original control points. In the rendering step, the empty space leaping is applicable to increase rendering speed. We have to calculate the maximum and minimum values for each block to detect empty space. The convex hull property of B spline enables the values of control points to be used as the maximum and minimum values. As a result, tri-cubic interpolated volume rendering is possible in interactive speed.

Efficient GPU Isosurface Ray-casting of BCC Datasets (효율적인 BCC 볼륨 데이터의 GPU 등가면 광선투사법)

  • Kim, Minho;Kim, Hyunjun;Sarfaraz, Aaliya
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.2
    • /
    • pp.19-27
    • /
    • 2013
  • This paper presents a real-time GPU (Graphics Processing Unit) isosurface ray-caster that improves the performance by 4-7 folds from our previous method, while keeping the superior visual quality. Such an improvement is achieved by incorporating an efficient empty-space skipping scheme and an analytic normal computation. The empty-space skipping scheme is done by building an min/max octree computed from the BB(Bernslein-B$\acute{e}$zier)-form of spline pieces and the analytic normal Formula provides not only a nice visual quality but also an improved evaluation performance.

Development of a Branch-and-Bound Global Optimization Based on B-spline Approximation (비스플라인 분지한계법 기반의 전역최적화 알고리즘 개발)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.191-201
    • /
    • 2010
  • This paper presents a new global optimization algorithm based on the branch-and-bound principle using Bspline approximation techniques. It describes the algorithmic components and details on their implementation. The key components include the subdivision of a design space into mutually disjoint subspaces and the bound calculation of the subspaces, which are all established by a real-valued B-spline volume model. The proposed approach was demonstrated with various test problems to reveal computational performances such as the solution accuracy, number of function evaluations, running time, memory usage, and algorithm convergence. The results showed that the proposed algorithm is complete without using heuristics and has a good possibility for application in large-scale NP-hard optimization.

A Study on the VRML Visualization for Volume Data Optimization (VRML 가시화를 위한 볼륨 데이터 최적화)

  • 송선희;김문환;지창용;배철수;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.619-622
    • /
    • 2003
  • 3차원 모델링 데이터를 VRML로 가시화하기 위해서는 용량 최적화와 실시간 렌더링이 중요하다. 실시간 렌더링은 객체에 따른 폴리건 수에 영향을 받게 되는데, 폴리건 수가 작으면 렌더링의 질이 저하되고 폴리건 수가 많아 데이터 용량이 크면 오브젝트 표현력은 좋으나 높은 대역폭을 필요로 하여, 디더링 철상이 발생과 실시간 렌더링이 어렵게 된다. 그러므로 네트워크 가상공간 내의 오브젝트는 최소의 폴리건을 사용해 메쉬를 단순화 시켜주는 방법으로 데이터 용량을 줄여주는데, 용량은 저하되지만 블록화 현상이 발생하여 저급한 렌더링이 된다. 본 논문에서는 모델링 데이터의 폴리건 수를 줄여 데이터 용량을 최적화 하고, 폴리건의 단순화에서 생기는 블록화 현상을 제거할 수 있는 방법으로 B-스플라인 곡선과 명암처리 기법인 고라우드 명암법을 이용하여 경계면을 부드럽게 처리할 수 있는 기법을 제시한다.

  • PDF

Automatic prostate segmentation method on dynamic MR images using non-rigid registration and subtraction method (동작 MR 영상에서 비강체 정합과 감산 기법을 이용한 자동 전립선 분할 기법)

  • Lee, Jeong-Jin;Lee, Ho;Kim, Jeong-Kon;Lee, Chang-Kyung;Shin, Yeong-Gil;Lee, Yoon-Chul;Lee, Min-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.348-355
    • /
    • 2011
  • In this paper, we propose an automatic prostate segmentation method from dynamic magnetic resonance (MR) images. Our method detects contrast-enhanced images among the dynamic MR images using an average intensity analysis. Then, the candidate regions of prostate are detected by the B-spline non-rigid registration and subtraction between the pre-contrast and contrast-enhanced MR images. Finally, the prostate is segmented by performing a dilation operation outward, and sequential shape propagation inward. Our method was validated by ten data sets and the results were compared with the manually segmented results. The average volumetric overlap error was 6.8%, and average absolute volumetric measurement error was 2.5%. Our method could be used for the computer-aided prostate diagnosis, which requires an accurate prostate segmentation.

B-spline Volume BRDF Representation and Application in Physically-based Rendering (물리기반 렌더링에서의 비스플라인 볼륨 BRDF 표현과 응용)

  • Lee, Joo-Haeng;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.469-477
    • /
    • 2008
  • Physically-based rendering is an image synthesis technique based on simulation of physical interactions between light and surface materials. Since generated images are highly photorealistic, physically-based rendering has become an indispensable tool in advanced design visualization for manufacturing and architecture as well as in film VFX and animations. Especially, BRDF (bidirectional reflectance distribution function) is critical in realistic visualization of materials since it models how an incoming light is reflected on the surface in terms of intensity and outgoing angles. In this paper, we introduce techniques to represent BRDF as B-spline volumes and to utilize them in physically-based rendering. We show that B-spline volume BRDF (BVB) representation is suitable for measured BRDFs due to its compact size without quality loss in rendering. Moreover, various CAGD techniques can be applied to B-spline volume BRDFs for further controls such as refinement and blending.