• Title/Summary/Keyword: B regulatory subunit

Search Result 27, Processing Time 0.023 seconds

Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation

  • Yu, Un Young;Yoo, Byong Chul;Ahn, Jung-Hyuck
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2014
  • Overexpression of amyloid precursor protein with the Swedish mutation causes abnormal hyperphosphorylation of the microtubule-associated protein tau. Hyperphosphorylated isoforms of tau are major components of neurofibrillary tangles, which are histopathological hallmarks of Alzheimer's disease. Protein phosphatase 2A (PP2A), a major tau protein phosphatase, consists of a structural A subunit, catalytic C subunit, and a variety of regulatory B subunits. The B subunits have been reported to modulate function of the PP2A holoenzyme by regulating substrate binding, enzyme activity, and subcellular localization. In the current study, we characterized regulatory B subunit-specific regulation of tau protein phosphorylation. We showed that the PP2A B subunit PPP2R2A mediated dephosphorylation of tau protein at Ser-199, Ser-202/Thr-205, Thr-231, Ser-262, and Ser-422. Down-regulation of PPP2R5D expression decreased tau phosphorylation at Ser-202/Thr-205, Thr-231, and Ser-422, which indicates activation of the tau kinase glycogen synthase kinase 3 beta ($GSK3{\beta}$) by PP2A with PPP2R5D subunit. The level of activating phosphorylation of the $GSK3{\beta}$ kinase Akt at Thr-308 and Ser-473 were both increased by PPP2R5D knockdown. We also characterized B subunit-specific phosphorylation sites in tau using mass spectrometric analysis. Liquid chromatography-mass spectrometry revealed that the phosphorylation status of the tau protein may be affected by PP2A, depending on the specific B subunits. These studies further our understanding of the function of various B subunits in mediating site-specific regulation of tau protein phosphorylation.

Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.259-269
    • /
    • 2012
  • Protein phosphatase 2A (PP2A), a family of serine/threonine protein phosphatases, plays an important role in balancing the phosphorylation status of cellular proteins for regulating diverse biological functions in eukaryotic organisms. Despite intensive studies in mammals, limited information on its role is available in filamentous fungi. Here, we investigated the functional roles of genes for a putative B' delta regulatory subunit (FgPP2AR) and a catalytic subunit (FgPP2AC) of PP2A in a filamentous ascomycete, Fusarium graminearum. Molecular characterization of an insertional mutant of this plant pathogenic fungus allowed us to identify the roles of FgPP2AR. Targeted gene replacement and complementation analyses demonstrated that the deletion of FgPP2AR, which was constitutively expressed in all growth stages, caused drastic changes in hyphal growth, conidia morphology/germination, gene expression for mycotoxin production, sexual development and pathogenicity. In particular, overproduction of aberrant cylindrical-shaped conidia is suggestive of arthroconidial induction in the ${\Delta}FgPP2AR$ strain, which has never been described in F. graminearum. In contrast, the ${\Delta}FgPP2AC$ strain was not significantly different from its wild-type progenitor in conidiation, trichothecene gene expression, and pathogenicity; however, it showed reduced hyphal growth and no perithecial formation. The double-deletion ${\Delta}FgPP2AR;{\Delta}FgPP2AC$ strain had more severe defects than single-deletion strains in all examined phenotypes. Taken together, our results indicate that both the putative regulatory and catalytic subunits of PP2A are involved in various cellular processes for fungal development in F. graminearum.

Phosphorylation on the PPP2R5D B regulatory subunit modulates the biochemical properties of protein phosphatase 2A

  • Yu, Un-Young;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.263-267
    • /
    • 2010
  • To characterize the biochemical properties of the PP2A regulatory B subunit, PPP2R5D, we analyzed its phosphorylation sites, stoichiometry and effect on holoenzyme activity. PPP2R5D was phosphorylated on Ser-53, Ser-68, Ser-81, and Ser-566 by protein kinase A, and mutations at all four of these sites abolished any significant phosphorylation in vitro. In HEK293 cells, however, the Ser-566 was the major phosphorylation site after PKA activation by forskolin, with marginal phosphorylation on Ser-81. Inhibitory tyrosine phosphorylation on Tyr-307 of the PP2A catalytic C subunit was decreased after forskolin treatment. Kinetic analysis showed that overall PP2A activity was increased with phosphorylation by PPP2R5D phosphorylation. The apparent Km was reduced from $11.25\;{\mu}M$ to $1.175\;{\mu}M$ with PPP2R5D phosphorylation, resulting in an increase in catalytic activity. These data suggest that PKA-mediated activation of PP2A is enabled by PPP2R5D phosphorylation, which modulates the affinity of the PP2A holoenzyme to its physiological substrates.

Identification of Calcium/Calmodulin-Dependent Phosphatase as the Dephosphorylating Enzyme of IgE-Dependent Histamine-Releasing Factor in RBL-2H3 (RBL-2H3 세포에서 IgE-depnedent Histamine-releasing Factor의 탈인산화 효소에 관한 연구)

  • Hwang Sun-Ok;Lee Kyunglim
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.189-193
    • /
    • 2005
  • IgE-dependent histamine-releasing factor(HRF) was initially described as a secretagogue for secretion of histamine from IgE+ basophils from a subset of allergic donors. Previously, we identified that S98 residue of HRF was phosphorylated using anti-HRFpS98 antibody which specifically recognizes the phosphorylated serine residue of HRF and HRFS98A mutant construct. In vitro kinase assay, only wild type HRF was phosphorylated by PKC, and S98A HRF was not affected by PKC. In this study, we attempted to characterize the phosphatase which specifically dephosphorylates HRF by immunoprecipitation and pull-down assay. In RBL-2H3 cells, HRF interacted only with calcineurin (also called as PP2B, calcium/calmodulin-dependent phosphatase) but not with PP1 or PP2A. The results suggest that HRF is most likely dephosphory-lated by calcineurin.

Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage

  • Ju Hwan Kim;Rajnikant Patel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.427-436
    • /
    • 2023
  • Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.

Sequence Analysis and Functional Expression of the Structural and ]Regulatory Genes for Pyruvate Dehydrogenase

  • Hwan Youn;Jangyul Kwak
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • A cluster of genes encoding the pyruvate dehydrogenase complex (PDC) of Streptomyces seoulensis, a Gram-positive bacterium, was cloned and sequenced. The genes of S. seoulensis consist of four open reading frames. The first gene, lpd, which encodes a lipoamide dehydrogenase, is followed by pdhB encoding a dihydrolipoamide acetyltransferase (E2p), pdhR, a regulatory gene, and pdhA encoding a pyruvate dehydrogenase component (Elp). Elp had an unusual homodimeric subunit, which has been known only in Gram-negative bacteria S. seoulensis E2p contains two lipoyl domains like those of humans and Streptomyces faecalis. The pdhR gene appears to be clustered with the structural genes of S. seoulensis PDC. The PdhR-overexpressed S. seoulensis howed growth retardation and the decrease of Elp, indicating that PdhR regulates the function of PDC by repressing the expression of Elp. A strain of Streptomyces licidans overexpressing S. seoulensis PdhR showed a significant decreasein the level of actinorhodin, implying a regulatory role for Streptomyces PDC in antibiotic biosynthesis.

Identification and Characterization of a Putative Basic Helix-Loop-Helix (bHLH) Transcription Factor Interacting with Calcineurin in C. elegans

  • Lee, Soo-Ung;Song, Hyun-Ok;Lee, Wonhae;Singaravelu, Gunasekaran;Yu, Jae-Ran;Park, Woo-Yoon
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.455-461
    • /
    • 2009
  • Calcineurin is a $Ca^{2+}$/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotoninmediated egg laying at the downstream of tax-6.

Inactivation of Mad2B Enhances Apoptosis in Human Cervical Cancer Cell Line upon Cisplatin-Induced DNA Damage

  • Ju Hwan Kim;Hak Rim Kim;Rajnikant Patel
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.340-349
    • /
    • 2023
  • Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage. Mad2B co-localizes at nuclear foci with DNA damage markers, such as proliferating cell nuclear antigen and gamma histone H2AX (γ-H2AX), following cisplatin-induced DNA damage. However, unlike Mad2A, the binding of Mad2B to Cdc20 does not inhibit the activity of APC/C in vitro. In contrast to Mad2A, Mad2B does not localize to kinetochores or binds to Cdc20 in spindle assembly checkpoint-activated cells. Loss of the Mad2B protein leads to damaged nuclei following cisplatin-induced DNA damage. Mad2B/Rev7 depletion causes the accumulation of damaged nuclei, thereby accelerating apoptosis in human cancer cells in response to cisplatin-induced DNA damage. Therefore, our results suggest that Mad2B may be a critical modulator of DNA damage response.

Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells

  • Jang, Hyun-Jun;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.385-395
    • /
    • 2020
  • Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 ㎍/mL to 100 ㎍/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.

IRF2 enhances RANKL-induced osteoclast differentiation via regulating NF-κB/NFATc1 signaling

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Lee, Keun-Bae;Kim, Nacksung
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.482-487
    • /
    • 2021
  • Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated. Here, we investigated the involvement of IRF2 in RANKL-induced osteoclast differentiation. IRF2 overexpression in osteoclast precursor cells enhanced osteoclast differentiation by regulating the expression of NFATc1, a master regulator of osteoclastogenesis. Conversely, IRF2 knockdown inhibited osteoclast differentiation and decreased the NFATc1 expression. Moreover, IRF2 increased the translocation of NF-κB subunit p65 to the nucleus in response to RANKL and subsequently induced the expression of NFATc1. IRF2 plays an important role in RANKL-induced osteoclast differentiation by regulating NF-κB/NFATc1 signaling pathway. Taken together, we demonstrated the molecular mechanism of IRF2 in osteoclast differentiation, and provide a molecular basis for potential therapeutic targets for the treatment of bone diseases characterized by excessive bone resorption.