• Title/Summary/Keyword: B cell-activating factor

Search Result 64, Processing Time 0.031 seconds

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • v.4 no.2
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways

  • Ihn, Hye Jung;Kim, Ju Ang;Bae, Yong Chul;Shin, Hong-In;Baek, Moon-Chang;Park, Eui Kyun
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.150-155
    • /
    • 2017
  • Non-small-cell lung cancer (NSCLC) is the third most common cancer that spreads to the bone, resulting in osteolytic lesions caused by hyperactivation of osteoclasts. Activating mutations in epidermal growth factor receptor-tyrosine kinase (EGF-TK) are frequently associated with NSCLC, and afatinib is a first-line therapeutic drug, irreversibly targeting EGF-TK. However, the effects of afatinib on osteoclast differentiation and activation as well as the underlying mechanism remain unclear. In this study, afatinib significantly suppressed receptor activator of nuclear factor ${\kappa}B$ (RANK) ligand (RANKL)-induced osteoclast formation in bone marrow macrophages (BMMs). Consistently, afatinib inhibited the expression of osteoclast marker genes, whereas, it upregulated the expression of negative modulator genes. The bone resorbing activity of osteoclasts was also abrogated by afatinib. In addition, afatinib significantly inhibited RANKL-mediated Akt/protein kinase B and c-Jun N-terminal kinase phosphorylation. These results suggest that afatinib substantially suppresses osteoclastogenesis by downregulating RANK signaling pathways, and thus may reduce osteolysis after bone metastasis.

Effect of Pueraria thunbergiana Extracts on the Activation of Immune Cells (칡 추출물의 면역세포 활성화 효과)

  • Kim, Jong-Jin;Lee, Hyeok-Jae;Yee, Sung-Tae
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1107-1113
    • /
    • 2012
  • In this experiment, the effects of Pueraria thunbergiana extracts on the activation of immune cells were studied. An immune cell-activating factor was partially purified from P. thunbergiana by means of physiological saline extraction, acetone precipitation, and heating inactivation. P. thunbergiana extracts increased the proliferation of spleen cells and induced the production of IL-2, IL-6, TNF-${\alpha}$, and IFN-${\gamma}$ by spleen cells. Also, they increased the proliferation of purified B cells and the production of IgM antibody in a dose-dependent fashion. The extract self-induced NO synthesis in a mouse macrophage cell line (RAW264.7). When cell lines were treated with extracts, the cytokines' (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) production was markedly increased. Therefore, P. thunbergiana extract can self-activate spleen cells, B cells, and macrophages. These results might be useful in further studies into a possible immune-activating agent derived from P. thunbergiana for the development of functional foods and drugs.

E1/E2 of Hepatitis C Virus Genotype-4 and Apoptosis

  • Zekri, Abdel-Rahman N;Sobhy, Esraa;Hussein, Nehal;Ahmed, Ola S;Hussein, Amira;Shoman, Sahar;Soliman, Amira H;El-Din, Hanaa M Alam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3131-3138
    • /
    • 2016
  • Several studies have addressed the possible role of hepatitis C virus genotype-4 (HCV GT4) in apoptosis. However, this still not fully understood. In the current study a re-constructed clone of E1/E2 polyprotein region of the HCV GT4 was transfected into the Huh7 cell line and a human apoptotic PCR array of 84 genes was used to investigate its possible significance for apoptosis. Out of the 84 genes, only 35 showed significant differential expression, 12 genes being up-regulated and 23 down-regulated. The highest-up regulated genes were APAF1 (apoptotic peptidase-activating factor 1), BID (BH3 interacting domain death agonist) and BCL 10 (B-cell CLL/lymphoma protein 10) with fold regulation of 33.2, 30.1 and 18.9, respectively. The most down-regulated were FAS (TNF receptor super family), TNFRSF10B (tumor necrosis factor receptor super-family member 10b) and FADD (FAS-associated death domain) with fold regulation of -30.2, -27.7 and -14.9, respectively. These results suggest that the E1/E2 proteins may be involved in HCV-induced pathogenesis by modulating apoptosis through the induction of the intrinsic apoptosis pathway and disruption of the BCL2 gene family.

Kinesin Superfamily Protein 5A (KIF5A) Binds to ArfGAP1, ADP-ribosylation Factor GTPase-activating Protein 1 (Kinesin Superfamily Protein 5A (KIF5A)와 ADP-ribosylation Factor GTPase-activating Protein 1 (ArfGAP1)의 결합)

  • Myoung Hun Kim;Se Young Pyo;Eun Joo Chung;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.333-338
    • /
    • 2024
  • Kinesin-1 is a heterotetrameric protein composed of two heavy chains (KHCs, also known as KIF5s) with a motor domain and two light chains (KLCs) without a motor domain. KIF5 has three subtypes, namely, KIF5A, KIF5B, and KIF5C, which share high amino acid homology except in their carboxy (C)-terminal region. KIF5A is responsible for transporting cargo within the cell. The adaptor proteins that bind to the C-terminal region of KIF5A mediate between kinesin-1 and cargo. However, the proteins regulating the intracellular cargo transport of kinesin-1 have not yet been fully identified. In this study, we identified ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1), which is involved in the intracellular trafficking of lysosomes, as a binding partner of KIF5A. KIF5A binds to the C-terminal region of ArfGAP1, and ArfGAP1 binds to the C-terminal region of KIF5A but does not interact with KIF5B, KIF5C, kinesin light chain 1 (KLC1), or KIF3A. When co-expressed in mammalian cells, ArfGAP1 co-localized with KIF5A and co-immunoprecipitated with KIF5A, KIF5B, and KLC1, but not with KIF3B. These results suggest that kinesin-1 may be regulated by ArfGAP1 in the intracellular transport of cargo.

Transcription Factor E2F7 Hampers the Killing Effect of NK Cells against Colorectal Cancer Cells via Activating RAD18 Transcription

  • Bingdong Jiang;Binghua Yan;Hengjin Yang;He Geng;Peng Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.920-929
    • /
    • 2024
  • As a pivotal defensive line against multitudinous malignant tumors, natural killer (NK) cells exist in the tumor microenvironment (TME). RAD18 E3 Ubiquitin Protein Ligase (RAD18) has been reported to foster the malignant progression of multiple cancers, but its effect on NK function has not been mined. Here, the study was designed to mine the mechanism by which RAD18 regulates the killing effect of NK cells on colorectal cancer (CRC) cells. Expression of E2F Transcription Factor 7 (E2F7) and RAD18 in CRC tissues, their correlation, binding sites, and RAD18 enrichment pathway were analyzed by bioinformatics. Expression of E2F7 and RAD18 in cells was assayed by qRT-PCR and western blot. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay verified the regulatory relationship between E2F7 and RAD18. CCK-8 assay was utilized to assay cell viability, colony formation assay to detect cell proliferation, lactate dehydrogenase (LDH) test to assay NK cell cytotoxicity, ELISA to assay levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and immunofluorescence to detect expression of toxic molecules perforin and granzyme B. High expression of RAD18 and E2F7 was found in CRC tissues and cells. Silencing RAD18 could hamper the proliferation of CRC cells, foster viability and cytotoxicity of NK cells, and increase the secretion of GM-CSF, TNF-α, IFN-γ as well as the expression of perforin and granzyme B. Additionally, ChIP and dual-luciferase reporter assay ascertained the binding relationship between RAD18 promoter region and E2F7. E2F7 could activate the transcription of RAD18, and silencing RAD18 reversed the inhibitory effect of E2F7 overexpression on NK cell killing. This work clarified the inhibitory effect of the E2F7/RAD18 axis on NK cell killing in CRC, and proffered a new direction for immunotherapy of CRC in targeted immune microenvironment.

Effects of Mix-1 on Anti-CD40 Antibody and Recombinant IL4- Induced Cytokine Production and Immunoglobulin E in Highly Purified Mouse B Cells

  • Kim Jung Hwan;Choi Sun Mi;Lee Yong Gu;Namgoong Uk;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1869-1880
    • /
    • 2004
  • In the oriental medicine, a mixture of herbs has been commonly used as important components to control allergic and inflammatory diseases. In the present study, we prepared a mixture of Dictamni Radicis Cortex(Baiksunpee), Houttuyniae Herba(Uhsungcho), and Aurantii Immaturus Fructus(Jisil) to examine its anti-allergic effects in activated mouse splenic cells and found that Mix-1 is involved in regulating levels of B cell activating factors (CD23 and CD11a), IL-1β, IL-6, IL-10, TNF-α, and 1gE as well as HRF expression. It was observed that Mix-1 did not have cytotoxic effects on mLFC. Mix-1 showed inhibition of CD23 and CD11 alpaha expression in mouse B cells, and also decreased the production of IL-6, TNF-α, and 1gE. Both RT-PCR and ELISA analyses indicated that IL-6 and TNF alpha production were regulated at the gene expression level. In contrast, IL-10 mRNA and protein levels were increased in activated B cells by Mix-1 treatment. We also found that Mix-1 inhibited B cell proliferation and inhibited histamine releasing factor(HRF) expression, suggesting its inhibitory effect on histamine secretion. These data indicated that Mix-1 has an anti-allergic effect in activated macrophages and further suggest the possible application of Mix-1 as a therapeutic agent for the treatment of allergy-related diseases.

Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

  • Zheng Yi;Gao Bo;Ye Li;Kong Lingbao;Jing Wei;Yang Xiaojun;Wu Zhenghui;Ye Linbai
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.529-536
    • /
    • 2005
  • Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing $\alpha-mannosidase-like$ protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1-XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.

Enzymatic bioconversion of ginseng powder increases the content of minor ginsenosides and potentiates immunostimulatory activity

  • Park, Jisang;Kim, Ju;Ko, Eun-Sil;Jeong, Jong Hoon;Park, Cheol-Oh;Seo, Jeong Hun;Jang, Yong-Suk
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.304-314
    • /
    • 2022
  • Background: Ginsenosides are biologically active components of ginseng and have various functions. In this study, we investigated the immunomodulatory activity of a ginseng product generated from ginseng powder (GP) via enzymatic bioconversion. This product, General Bio compound K-10 mg solution (GBCK10S), exhibited increased levels of minor ginsenosides, including ginsenoside-F1, compound K, and compound Y. Methods: The immunomodulatory properties of GBCK10S were confirmed using mice and a human natural killer (NK) cell line. We monitored the expression of molecules involved in immune responses via enzyme-linked immunosorbent assay, flow cytometry, NK cell-targeted cell destruction, quantitative reverse-transcription real-time polymerase chain reaction, and Western blot analyses. Results: Oral administration of GBCK10S significantly increased serum immunoglobulin M levels and primed splenocytes to express pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ. Oral administration of GBCK10S also activated NK cells in mice. Furthermore, GBCK10S treatment stimulated a human NK cell line in vitro, thereby increasing granzyme B gene expression and activating STAT5. Conclusion: GBCK10S may have potent immunostimulatory properties and can activate immune responses mediated by B cells, Th1-type T cells, and NK cells.

ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line

  • Hwang, Eunjoo;Hwang, Seong-Hye;Kim, Jongjin;Park, Jin Hyun;Oh, Sohee;Kim, Young A;Hwang, Ki-Tae
    • Annals of Surgical Treatment and Research
    • /
    • v.95 no.5
    • /
    • pp.240-248
    • /
    • 2018
  • Purpose: This study aimed to validate the synergistic effect of ABT-737 on docetaxel using MDA-MB-231, a triple negative breast cancer (TNBC) cell line overexpressing B-cell lymphoma-2 (Bcl-2). Methods: Western blot analysis was performed to assess expression levels of Bcl-2 family proteins and caspase-related molecules. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution was determined by flow cytometry analysis. Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) was used for pretreatment to assess the role of caspases. Results: Cell viability of MDA-MB-231 after combination treatment with ABT-737 and docetaxel was significantly lower than that after docetaxel or ABT-737 monotherapy based on MTT assay (both P < 0.001), with a combination index of 0.41. The proportion of sub-G1 population after combination treatment was significantly higher than that after docetaxel or ABT-737 monotherapy (P = 0.001, P = 0.003, respectively). Pretreatment with z-VAD-fmk completely restored cell viability of MDA-MB-231 from apoptotic cell death induced by combination therapy (P = 0.001). Although pro-caspase-8 or Bid did not show significant change in expression level, pro-casepase-9 showed significantly decreased expression after combination treatment. Cleaved caspase-3 showed increased expression while poly (ADP-ribose) polymerase cleavage was induced after combination treatment. However, hypoxia-inducible factor 1-alpha and aldehyde dehydrogenase 1 totally lost their expression after combination treatment. Conclusion: Combination of ABT-737 with docetaxel elicits synergistic therapeutic effect on MDA-MB-231, a TNBC cell line overexpressing Bcl-2, mainly by activating the intrinsic pathway of apoptosis. Therefore, adjunct of ABT-737 to docetaxel might be a new therapeutic option to overcome docetaxel resistance of TNBCs overexpressing Bcl-2.