• 제목/요약/키워드: B Cell Activating Factor

검색결과 63건 처리시간 0.023초

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • 제4권2호
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways

  • Ihn, Hye Jung;Kim, Ju Ang;Bae, Yong Chul;Shin, Hong-In;Baek, Moon-Chang;Park, Eui Kyun
    • BMB Reports
    • /
    • 제50권3호
    • /
    • pp.150-155
    • /
    • 2017
  • Non-small-cell lung cancer (NSCLC) is the third most common cancer that spreads to the bone, resulting in osteolytic lesions caused by hyperactivation of osteoclasts. Activating mutations in epidermal growth factor receptor-tyrosine kinase (EGF-TK) are frequently associated with NSCLC, and afatinib is a first-line therapeutic drug, irreversibly targeting EGF-TK. However, the effects of afatinib on osteoclast differentiation and activation as well as the underlying mechanism remain unclear. In this study, afatinib significantly suppressed receptor activator of nuclear factor ${\kappa}B$ (RANK) ligand (RANKL)-induced osteoclast formation in bone marrow macrophages (BMMs). Consistently, afatinib inhibited the expression of osteoclast marker genes, whereas, it upregulated the expression of negative modulator genes. The bone resorbing activity of osteoclasts was also abrogated by afatinib. In addition, afatinib significantly inhibited RANKL-mediated Akt/protein kinase B and c-Jun N-terminal kinase phosphorylation. These results suggest that afatinib substantially suppresses osteoclastogenesis by downregulating RANK signaling pathways, and thus may reduce osteolysis after bone metastasis.

칡 추출물의 면역세포 활성화 효과 (Effect of Pueraria thunbergiana Extracts on the Activation of Immune Cells)

  • 김종진;이혁재;이성태
    • 생명과학회지
    • /
    • 제22권8호
    • /
    • pp.1107-1113
    • /
    • 2012
  • 동양에서 한약 재료로 사용되는 칡(Pueraria thunbergiana)은 항산화, 항균효과 및 골다공증 치료 등의 다양한 효과가 있는 것으로 밝혀지고 있지만, 생태학적으로는 산림생태계를 파괴하는 종으로 알려져 있다. 본 연구는 칡의 면역학적 효과를 검증하여 유용한 자원으로 활용하는데 목적이 있다. 칡 추출물을 이용하여 생쥐 비장에 있는 면역세포 활성화 작용을 실험한 결과, 칡 추출물은 첫째, 농도 의존적으로 생쥐 비장세포의 증식 유도하였으며 IL-6, TNF-${\alpha}$, IL-2, IFN-${\gamma}$의 cytokine 생산을 증가시켰다. 둘째, 특히 비장세포 중 칡 추출물은 B세포를 자극하여 세포증식 및 IgM의 생산을 증가시켰다. 셋째, 대식세포주의 일산화질소 생산을 유도하였으며, 또 TNF-${\alpha}$, IL-6 및 IL-$1{\beta}$의 cytokine 분비를 유도하였다. 이상의 실험 결과, 본 실험에서 사용한 칡 추출물은 B세포와 대식세포 같은 면역세포의 증식과 각종 사이토카인을 생산을 유도하기 때문에, 면역반응을 조절하는 성분이 포함되어 있는 것으로 생각되며 특히, 아세톤 추출물이 물 추출물에 비하여 효과적이었다. 따라서 추가적인 실험을 통해, 면역반응을 조절하는 성분을 분리 정제하여 그 특성을 명확히 규명한다면, 각종 의약품이나 건강식품을 개발할 수 있는 원재료로서 칡을 이용할 수 있으며, 부수적으로 산림생태계에 복원에도 기여할 수 있을 것으로 사료된다.

E1/E2 of Hepatitis C Virus Genotype-4 and Apoptosis

  • Zekri, Abdel-Rahman N;Sobhy, Esraa;Hussein, Nehal;Ahmed, Ola S;Hussein, Amira;Shoman, Sahar;Soliman, Amira H;El-Din, Hanaa M Alam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3131-3138
    • /
    • 2016
  • Several studies have addressed the possible role of hepatitis C virus genotype-4 (HCV GT4) in apoptosis. However, this still not fully understood. In the current study a re-constructed clone of E1/E2 polyprotein region of the HCV GT4 was transfected into the Huh7 cell line and a human apoptotic PCR array of 84 genes was used to investigate its possible significance for apoptosis. Out of the 84 genes, only 35 showed significant differential expression, 12 genes being up-regulated and 23 down-regulated. The highest-up regulated genes were APAF1 (apoptotic peptidase-activating factor 1), BID (BH3 interacting domain death agonist) and BCL 10 (B-cell CLL/lymphoma protein 10) with fold regulation of 33.2, 30.1 and 18.9, respectively. The most down-regulated were FAS (TNF receptor super family), TNFRSF10B (tumor necrosis factor receptor super-family member 10b) and FADD (FAS-associated death domain) with fold regulation of -30.2, -27.7 and -14.9, respectively. These results suggest that the E1/E2 proteins may be involved in HCV-induced pathogenesis by modulating apoptosis through the induction of the intrinsic apoptosis pathway and disruption of the BCL2 gene family.

Kinesin Superfamily Protein 5A (KIF5A)와 ADP-ribosylation Factor GTPase-activating Protein 1 (ArfGAP1)의 결합 (Kinesin Superfamily Protein 5A (KIF5A) Binds to ArfGAP1, ADP-ribosylation Factor GTPase-activating Protein 1)

  • 김명훈;표세영;정은주;정영주;박성우;서미경;이원희;엄상화;김무성;석대현
    • 생명과학회지
    • /
    • 제34권5호
    • /
    • pp.333-338
    • /
    • 2024
  • 키네신-1은 모터 도메인이 있는 두 개의 중쇄(KHC 또는 KIF5)와 모터 도메인이 없는 두 개의 경쇄(KLC)로 구성된 이형사량체 단백질이다. KIF5에는 KIF5A, KIF5B 및 KIF5C의 세 가지 subtype이 있으며, 카르복실(C)-말단 영역을 제외하고는 아미노산 상동성이 높다. KIF5A는 세포 내에서 화물을 운반하며, KIF5A의 C-말단 영역에 결합하는 매개 단백질은 키네신-1과 화물 사이를 연결한다. 키네신-1의 세포내 수송을 조절하는 단백질은 아직 충분히 확인되지 않았다. 본 연구는 리소좀의 세포 내 수송에 관여하는 ADP-ribosylation GTPase-activating protein 1 (ArfGAP1)과 KIF5A와의 결합을 확인하였다. KIF5A는 ArfGAP1의 C-말단 영역에 결합하고, ArfGAP1은 KIF5A의 C-말단 영역에 결합하지만 KIF5B, KIF5C, 키네신 경쇄 1 (KLC1) 또는 KIF3A와는 결합하지 않았다. ArfGAP 도메인을 가진 다른 동질형인 SMAP1과는 결합하지 않았다. 세포에서 KIF5A는 ArfGAP1과 같은 위치에서 발현하며, KIF5A, KIF5B 및 KLC1와 같이 면역 침전하였다. 그러나, KIF3B와는 같이 면역 침전하지 않았다. 이러한 결과들은 키네신-1은 세포내 화물 수송에서 ArfGAP1에 의해 조절될 수 있음을 시사한다.

Effects of Mix-1 on Anti-CD40 Antibody and Recombinant IL4- Induced Cytokine Production and Immunoglobulin E in Highly Purified Mouse B Cells

  • Kim Jung Hwan;Choi Sun Mi;Lee Yong Gu;Namgoong Uk;Kim Dong Hee
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1869-1880
    • /
    • 2004
  • In the oriental medicine, a mixture of herbs has been commonly used as important components to control allergic and inflammatory diseases. In the present study, we prepared a mixture of Dictamni Radicis Cortex(Baiksunpee), Houttuyniae Herba(Uhsungcho), and Aurantii Immaturus Fructus(Jisil) to examine its anti-allergic effects in activated mouse splenic cells and found that Mix-1 is involved in regulating levels of B cell activating factors (CD23 and CD11a), IL-1β, IL-6, IL-10, TNF-α, and 1gE as well as HRF expression. It was observed that Mix-1 did not have cytotoxic effects on mLFC. Mix-1 showed inhibition of CD23 and CD11 alpaha expression in mouse B cells, and also decreased the production of IL-6, TNF-α, and 1gE. Both RT-PCR and ELISA analyses indicated that IL-6 and TNF alpha production were regulated at the gene expression level. In contrast, IL-10 mRNA and protein levels were increased in activated B cells by Mix-1 treatment. We also found that Mix-1 inhibited B cell proliferation and inhibited histamine releasing factor(HRF) expression, suggesting its inhibitory effect on histamine secretion. These data indicated that Mix-1 has an anti-allergic effect in activated macrophages and further suggest the possible application of Mix-1 as a therapeutic agent for the treatment of allergy-related diseases.

Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

  • Zheng Yi;Gao Bo;Ye Li;Kong Lingbao;Jing Wei;Yang Xiaojun;Wu Zhenghui;Ye Linbai
    • Journal of Microbiology
    • /
    • 제43권6호
    • /
    • pp.529-536
    • /
    • 2005
  • Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing $\alpha-mannosidase-like$ protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1-XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.

Enzymatic bioconversion of ginseng powder increases the content of minor ginsenosides and potentiates immunostimulatory activity

  • Park, Jisang;Kim, Ju;Ko, Eun-Sil;Jeong, Jong Hoon;Park, Cheol-Oh;Seo, Jeong Hun;Jang, Yong-Suk
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.304-314
    • /
    • 2022
  • Background: Ginsenosides are biologically active components of ginseng and have various functions. In this study, we investigated the immunomodulatory activity of a ginseng product generated from ginseng powder (GP) via enzymatic bioconversion. This product, General Bio compound K-10 mg solution (GBCK10S), exhibited increased levels of minor ginsenosides, including ginsenoside-F1, compound K, and compound Y. Methods: The immunomodulatory properties of GBCK10S were confirmed using mice and a human natural killer (NK) cell line. We monitored the expression of molecules involved in immune responses via enzyme-linked immunosorbent assay, flow cytometry, NK cell-targeted cell destruction, quantitative reverse-transcription real-time polymerase chain reaction, and Western blot analyses. Results: Oral administration of GBCK10S significantly increased serum immunoglobulin M levels and primed splenocytes to express pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ. Oral administration of GBCK10S also activated NK cells in mice. Furthermore, GBCK10S treatment stimulated a human NK cell line in vitro, thereby increasing granzyme B gene expression and activating STAT5. Conclusion: GBCK10S may have potent immunostimulatory properties and can activate immune responses mediated by B cells, Th1-type T cells, and NK cells.

ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line

  • Hwang, Eunjoo;Hwang, Seong-Hye;Kim, Jongjin;Park, Jin Hyun;Oh, Sohee;Kim, Young A;Hwang, Ki-Tae
    • Annals of Surgical Treatment and Research
    • /
    • 제95권5호
    • /
    • pp.240-248
    • /
    • 2018
  • Purpose: This study aimed to validate the synergistic effect of ABT-737 on docetaxel using MDA-MB-231, a triple negative breast cancer (TNBC) cell line overexpressing B-cell lymphoma-2 (Bcl-2). Methods: Western blot analysis was performed to assess expression levels of Bcl-2 family proteins and caspase-related molecules. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution was determined by flow cytometry analysis. Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) was used for pretreatment to assess the role of caspases. Results: Cell viability of MDA-MB-231 after combination treatment with ABT-737 and docetaxel was significantly lower than that after docetaxel or ABT-737 monotherapy based on MTT assay (both P < 0.001), with a combination index of 0.41. The proportion of sub-G1 population after combination treatment was significantly higher than that after docetaxel or ABT-737 monotherapy (P = 0.001, P = 0.003, respectively). Pretreatment with z-VAD-fmk completely restored cell viability of MDA-MB-231 from apoptotic cell death induced by combination therapy (P = 0.001). Although pro-caspase-8 or Bid did not show significant change in expression level, pro-casepase-9 showed significantly decreased expression after combination treatment. Cleaved caspase-3 showed increased expression while poly (ADP-ribose) polymerase cleavage was induced after combination treatment. However, hypoxia-inducible factor 1-alpha and aldehyde dehydrogenase 1 totally lost their expression after combination treatment. Conclusion: Combination of ABT-737 with docetaxel elicits synergistic therapeutic effect on MDA-MB-231, a TNBC cell line overexpressing Bcl-2, mainly by activating the intrinsic pathway of apoptosis. Therefore, adjunct of ABT-737 to docetaxel might be a new therapeutic option to overcome docetaxel resistance of TNBCs overexpressing Bcl-2.

Combination of Grapefruit and Rosemary Extracts Has Skin Protective Effect through MMPs, MAPKs, and the NF-κB Signaling Pathway In Vitro and In Vivo UVB-exposed Model

  • Yoon, Yeo-Cho;Choi, Hee-Jeong;Park, Ji-Hyun;Diniyah, Nurud;Shin, Hyun-A;Kim, Mi-Yeon
    • 한국자원식물학회지
    • /
    • 제32권6호
    • /
    • pp.633-643
    • /
    • 2019
  • Long-term ultraviolet (UV) exposure accelerates the phenomenon of skin photo-aging by activating collagenase and elastase. In this study, we aimed to investigate the effects of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-irradiated damage in HaCaT cells and dorsal mouse skin. In HaCaT cells, cG&Re recovered UVB-reduced cell viability and inhibited protein expression of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases (p-Erk), c-Jun N-terminal kinases (p-JNK), and a class of MAPKs (p-P38). Also, cG&Re suppressed UVB-induced collagen and elastin degradation by decreasing matrix metalloproteinases (MMPs) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) expression, which is a transcription factor. Similar results were observed in dorsal mouse skin. Taken together, our data indicate that cG&Re prevent UVB-induced skin photo-aging due to collagen/elastin degradation via activation of MAPKs, MMPs, and the NF-κB signaling pathway in vitro and in vivo.