• 제목/요약/키워드: Azumiobodo hoyamushi

검색결과 5건 처리시간 0.017초

멍게, Halocynthia roretzi 물렁증의 원인충인 Azumiobodo hoyamushi의 살충효과 평가를 위한 현미경계수법과 alamar blue assay 비교 (Comparison of microscopic counting and alamar blue assay to evaluate anti-protozoal effects against Azumiobodo hoyamushi that causes soft tunic syndrome to Halocynthia roretzi)

  • 이재근;전승렬;박경일;최상훈;박관하
    • 한국어병학회지
    • /
    • 제26권1호
    • /
    • pp.31-38
    • /
    • 2013
  • The edible ascidian, Halocynthia roretzi is a commercially important fisheries resource in Korea. However, there have been outbreaks of mass mortality due to soft tunic syndrome. It was discovered recently that the cause of death is infection by a protozoan parasite Azumiobodo hoyamushi. Alamar blue assay and microscopic counting were used to estimate anti-protozoal effects of 20 drugs having different action mechanisms. Through comparison of alamar blue assay and microscopic counting, 6 drugs were found to be potential in protozoan-killing effects: amphotericin B, formalin, hydrogen peroxide, bithionol, benzalkonium chloride, bronopol (24hr-$EC_{50}{\leq}20{\mu}g/ml$). The preliminary data can be used as a basis to develop anti-protozoal agents against A. hoyamushi.

Development of Loop-Mediated Isothermal Amplification Targeting 18S Ribosomal DNA for Rapid Detection of Azumiobodo hoyamushi (Kinetoplastea)

  • Song, Su-Min;Sylvatrie-Danne, Dinzouna-Boutamba;Joo, So-Young;Shin, Yun Kyung;Yu, Hak Sun;Lee, Yong-Seok;Jung, Ji-Eon;Inoue, Noboru;Lee, Won Kee;Goo, Youn-Kyoung;Chung, Dong-Il;Hong, Yeonchul
    • Parasites, Hosts and Diseases
    • /
    • 제52권3호
    • /
    • pp.305-310
    • /
    • 2014
  • Ascidian soft tunic syndrome (AsSTS) caused by Azumiobodo hoyamushi (A. hoyamushi) is a serious aquaculture problem that results in mass mortality of ascidians. Accordingly, the early and accurate detection of A. hoyamushi would contribute substantially to disease management and prevention of transmission. Recently, the loop-mediated isothermal amplification (LAMP) method was adopted for clinical diagnosis of a range of infectious diseases. Here, the authors describe a rapid and efficient LAMP-based method targeting the 18S rDNA gene for detection of A. hoyamushi using ascidian DNA for the diagnosis of AsSTS. A. hoyamushi LAMP assay amplified the DNA of 0.01 parasites per reaction and detected A. hoyamushi in 10 ng of ascidian DNA. To validate A. hoyamushi 18S rDNA LAMP assays, AsSTS-suspected and non-diseased ascidians were examined by microscopy, PCR, and by using the LAMP assay. When PCR was used as a gold standard, the LAMP assay showed good agreement in terms of sensitivity, positive predictive value (PPV), and negative predictive value (NPV). In the present study, a LAMP assay based on directly heat-treated samples was found to be as efficient as DNA extraction using a commercial kit for detecting A. hoyamushi. Taken together, this study shows the devised A. hoyamushi LAMP assay could be used to diagnose AsSTS in a straightforward, sensitive, and specific manner, that it could be used for forecasting, surveillance, and quarantine of AsSTS.

멍게 물렁증의 원인충인 Azumiobodo hoyamushi에 대한 유기산의 살충효과 연구 (Anti-protozoal effect of organic acids against Azumiobodo hoyamushi that causes soft tunic syndrome to Halocynthia roretzi)

  • 이지훈;박경일;박관하
    • 한국어병학회지
    • /
    • 제28권3호
    • /
    • pp.117-123
    • /
    • 2015
  • 우리나라 멍게 양식의 발전으로 생산량이 점점 증가하였으나 최근 물렁증 (soft tunic syndrome)으로 멍게가 대량 폐사하여 경제적으로 많은 손실을 입고 있다. 이런 물렁증을 일으키는 원인체가 Azumiobodo hoyamushi라고 보고되었다. 하지만 이 원인충을 박멸할 수 있는 치료제 연구는 미비한 실정이다. 저자들에 의한 이전의 연구에서 기존의 산화제, 환원제, 소독제 등에서 물렁증에 대한 치료효과가 있다고 보고하였다. 본 연구에서는 기존의 약제보다 좀 더 친환경적인 유기산을 활용하여 in vitro 및 in vivo 시험을 통하여 연구하였다. In vitro 시험에서 12종의 유기산 중 8종이 $300{\mu}g/ml$에서 100% 원충에 대한 살충효과를 발휘하였다. In vivo에서의 유기산 침투효과를 평가하기 위해 pH의 변화를 측정한 결과, 유기산 처리 후 멍게 피막내 pH는 in vitro 에서 보다는 0.5~1 정도 높고 무처리 피막보다는 2.0 정도가 낮아 부분적으로는 침투가 일어남을 확인하였다. 본 연구를 토대로 친환경적인 유기산을 이용하여 물렁증의 치료에 활용할 수 있을 것이다.

Methods to eradicate soft tunic syndrome (STS)-causing protozoa Azumiobodo hoyamushi, the highly infectious parasite from the edible ascidian (Halocynthia roretzi)

  • Lee, Ji-Hoon;Lee, Jae-Geun;Zeon, Seung-Ryul;Park, Kyung-Il;Park, Kwan Ha
    • Fisheries and Aquatic Sciences
    • /
    • 제19권1호
    • /
    • pp.1.1-1.6
    • /
    • 2016
  • Although soft tunic syndrome (STS) in the ascidian is a serious disease, helpful measures have yet not been established. It was examined in this study by applying aniti-parasitic drugs to eradicate the causative protozoa Azumiobodo hoyamushi from infected ascidians. Formalin was synergistic in killing parasites in vitro when co-treated with hydrogen peroxide ($H_2O_2$) or bronopol, but not with chloramine-T or povidone-iodine (PVP-I), when tested with in vitro parasite culture. The synergistic effects did not change when $formalin-H_2O_2$ (or bronopol) ratios were changed. It was found that treatment periods less than 60 min achieved a sub-maximal efficacy. Increasing drug concentration while keeping 30 min period improved anti-parasitic effects. Anti-parasitic effects of $formalin(F)+H_2O_2$(H) were also assessed in an in vivo STS model infected with cultured parasites. It was observed that combined 50 (40F + 10H) and 100 (80F +20H) ppm were effective in partially preventing STS-caused mortality. In horizontally transmitted artificial STS model, significant prevention of ascidian mortality was also observed after 50 ppm. Marked reduction of living parasites were noted after drug treatments in vivo. The results provide a highly useful basis to develop a preventive or treatment measure against the currently uncontrollable STS in the ascidian.

Biochemical changes and drug residues in ascidian Halocynthia roretzi after formalin-hydrogen peroxide treatment regimen designed against soft tunic syndrome

  • Lee, Ji-Hoon;Kim, Ju-Wan;Shin, Yun-Kyung;Park, Kyung-Il;Park, Kwan Ha
    • Fisheries and Aquatic Sciences
    • /
    • 제20권7호
    • /
    • pp.12.1-12.7
    • /
    • 2017
  • Soft tunic syndrome (STS) is a protozoal disease caused by Azumiobodo hoyamushi in the edible ascidian Halocynthia roretzi. Previous studies have proven that combined formalin-hydrogen peroxide ($H_2O_2$) bath is effective in reducing STS progress and mortality. To secure target animal safety for field applications, toxicity of the treatment needs to be evaluated. Healthy ascidians were bathed for 1 week, 1 h a day at various bathing concentrations. Bathing with 5- and 10-fold optimum concentration caused 100% mortality of ascidians, whereas mortality by 0.5- to 2.0-fold solutions was not different from that of control. Of the oxidative damage parameters, MDA levels did not change after 0.5- and 1.0-fold bathing. However, free radical scavenging ability and reducing power were significantly decreased even with the lower-than-optimal 0.5-fold concentration. Glycogen content tended to increase with 1-fold bathing without statistical significance. All changes induced by the 2-fold bathing were completely or partially restored to control levels 48 h post-bathing. Free amino acid analysis revealed a concentration-dependent decline in aspartic acid and cysteine levels. In contrast, alanine and valine levels increased after the 2-fold bath treatment. These data indicate that the currently established effective disinfectant regimen against the parasitic pathogen is generally safe, and the biochemical changes observed are transient, lasting approximately 48 h at most. Low levels of formalin and $H_2O_2$ were detectable 1 h post-bathing; however, the compounds were completely undetectable after 48 h of bathing. Formalin-$H_2O_2$ bathing is effective against STS; however, reasonable care is required in the treatment to avoid unwanted toxicity. Drug residues do not present a concern for consumer safety.