• Title/Summary/Keyword: Azo Dyes

Search Result 126, Processing Time 0.026 seconds

Molecular identification of dye degrading bacterial isolates and FT-IR analysis of degraded products

  • Khan, Shellina;Joshi, Navneet
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.561-570
    • /
    • 2020
  • In the present study, dye decolorizing bacteria were isolated from water and soil samples, collected from textile industries in Jodhpur province, India. Two bacterial species namely, Bacillus pumilis and Paenibacillus thiaminolyticus were screened and identified based on biochemical characterization. The degradation efficiency of these two microorganisms was compared through optimization of pH, incubation time, initial dye concentration and inoculum size. B. pumilis and P. thiominolyticus were able to degrade 61% and 67% Red HE3B, 81% and 75% Orange F2R, 49.7% and 44.2% Yellow ME4GL and 61.6% and 59.5% Blue RC CT dyes of 800mg/l concentration respectively. The optimum pH and time were found to be 8 within 24 hours. The FT-IR analysis confirmed that microorganisms were able to degrade toxic azo dyes into a non-toxic product as proved through structural modifications to analyze chemical functions in materials by detecting the vibrations that characterize chemical bonds. It is based on the absorption of infrared radiation by the microbial product. Therefore, Bacillus pumilis and Paenibacillus thiaminolyticus are a promising tool for decolorization of dyes due to its potential to effectively decolorize higher azo dye concentrations (10-800 mg/L) and can be exploited for bioremediation.

Synthesis, Structure Investigation and Dyeing Assessment of Novel Bisazo Disperse Dyes Derived from 3-(2'-Hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones

  • Metwally, M.A.;Bondock, S.;El-Desouky, S.I.;Abdou, M.M.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.348-356
    • /
    • 2012
  • In an attempt to find a new class of bisazo disperse dyes with better dyeing properties, a series of novel bisazo dyestuffs based on 4-arylhydrazono-3-(2'-hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones $\mathbf{3a-f}$ were prepared by diazocoupling of p-nitrophenyl diazonium chloride with 4-arylhydrazono-3-(2'-hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones $\mathbf{2a-f}$. Compounds $\mathbf{3a-f}$ were subsequently reacted with acetic anhydride in the presence of p-toluenesulfonic acid afford the corresponding O-acetyl derivatives $\mathbf{4a-f}$. The latter products as well as spectral data indicated that compounds $\mathbf{3a-f}$ exist predominantly in the azo-hydrazone tautomeric form (H) as the ZE-configuration. Additionally, two series of the synthesized dyes $\mathbf{3a-f}$ and $\mathbf{4a-f}$ were applied as disperse dyes for dyeing polyester fabrics and their fastness properties were evaluated. Also the position of color in CIELAB coordinates ($L^*$, $a^*$, $b^*$, $H^*$, $C^*$*) was assessed.

Isolation and Characterization of Klebsiella pneumoniae WL-5 Capable of Decolorizing Triphenylmethane and Azo Dyes (트리페닐메탄계와 아조계 색소를 탈색할 수 있는 Klebsiella pneumoniae WL-5의 분리 및 특성)

  • Wu, Jing;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1331-1335
    • /
    • 2008
  • A Klebsiella pneumoniae WL-5 with the capability of decolorizing several recalcitrant dyes was isolated from activated sludge of an effluent treatment plant of a textile and dyeing industry. This strain showed a higher dye decolorization under static condition and color removal was optimal at pH 6-8 and $30-35^{\circ}C$. More than 90% of its color of Congo Red were reduced within 12 hr at $200\;{\mu}M$ dye concentration. Malachite Green, Brilliant Green and Reactive Black-5 lost over 85% of their colors at $10\;{\mu}M$ dye concentration, but the percentage decolorization of Reactive Red-120, Reactive Orange-16, and Crystal Violet were about 46%, 25%, and 13%, respectively. Decolorizations of Congo Red and triphenylmethane dyes, such as Malachite Green, Brilliant Green, and Crystal Violet were mainly due to adsorption to cells, whereas azo dyes, such as Reactive Black-5, Reactive Red-120, and Reactive Orange-16 seemed to be removed by biodegradation through unknown enzymatic processes.

Monitoring of phase separation between silk fibroin and sericin using various dye system

  • Kwak, Hyo Won;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Understanding the interactions between fibroin and sericin is crucial in solving the mechanism of silk spinning. In this study, various commercially available dyes were used to monitor the interface between fibroin and sericin during the gelation of fibroin. The phase separation between fibroin and sericin could be observed by the addition of azo dyes over a certain molecular weight. Furthermore, the addition of the dyes to the sericin layer showed vivid phase separation over addition to the fibroin layer.

Decolorization of a Sulfonated Azo Dye, Congo Red, by Staphylococcus sp. EY-3

  • PARK, EUN-HEE;JANG, MOON-SUN;CHA, IN-HO;CHOI, YONG-LARK;CHO, YOUNG-SU;KIM, CHEORL-HO;LEE, YOUNG-CHOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.221-225
    • /
    • 2005
  • A Staphylococcus sp. EY-3 with the capability of decolorizing Congo Red was isolated from soil at an effluent treatment plant of a textile and dyeing industry. This strain was able to almost completely decolorize a high concentration of Congo Red in 48 h under aerobic conditions. Optimal color removal (more than 96%) was achieved at 30- 40oC, and no noticeable effects of different pH values (5.5- 8.0) on decolorization were observed. This strain also exhibited a remarkable decolorization capability against azo dyes under aerobic conditions, even at a high concentration (dyes 1 g/l) of dye. The metabolic product of Congo Red degradation by this strain was identified by gas chromatography with mass selective detection (GC/MSD) to be an amine derivative benzidine.

The dyeability and light fastness of amino azobenzene derivatives disperse dye( I ) (아미노 아조벤젠계 분산염료의 염색성 및 내광성(I))

  • Choi, Chang Nam;Lim, Seung Hee;Ryu, Hee Seok;Park, Hyung In;Hong, Sung Hak
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.24-30
    • /
    • 1996
  • In order to investigate the light fastness of amino azo disperse dyes, some kinds of disperse dyes were prepared and dyed to polyester fabric under the different conditions, such as single or mixture state. After the dyed fabric was irradiated with carbon arc light for several hours, the color differences and K/S values of fabric were measured. The light fastness of amino azo disperse dye was decreased by the introduction of OH group to the dye molecule. But when the amino azo dye was mixed with the anthraquinone disperse dye, the light fastness was increased. It was considered that the dye molecules were aggregated on account of hydrogen bonding via OH groups, resulting the decrease of surface area of dye molecule which might be irradiated by the light.

  • PDF