DOI QR코드

DOI QR Code

Monitoring of phase separation between silk fibroin and sericin using various dye system

  • Kwak, Hyo Won (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Lee, Ki Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
  • Received : 2014.12.29
  • Accepted : 2015.03.25
  • Published : 2015.03.31

Abstract

Understanding the interactions between fibroin and sericin is crucial in solving the mechanism of silk spinning. In this study, various commercially available dyes were used to monitor the interface between fibroin and sericin during the gelation of fibroin. The phase separation between fibroin and sericin could be observed by the addition of azo dyes over a certain molecular weight. Furthermore, the addition of the dyes to the sericin layer showed vivid phase separation over addition to the fibroin layer.

Keywords

References

  1. Bhatnagar, A., and Jain, A.K. (2005). A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid Interface Sci. 281, 49-55. https://doi.org/10.1016/j.jcis.2004.08.076
  2. Jin, H.J., and Kaplan, D.L. (2003). Mechanism of silk processing in insects and spiders. Nature 424, 1057-1061. https://doi.org/10.1038/nature01809
  3. Joosen, L., Hink, M.A., Gadella, T.W.J., and Goedhart, J. (2014). Effect of fixation procedures on the fluorescence lifetimes of Aequorea victoria derived fluorescent proteins. J. Microsc.. 256, 166-176. https://doi.org/10.1111/jmi.12168
  4. Kundu, B., Rajkhowa, R., Kundu, S.C., and Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 65, 457-470. https://doi.org/10.1016/j.addr.2012.09.043
  5. Lee, K.H. (2004). Silk sericin retards the crystallization of silk fibroin. Macromol. Rapid Commun. 25, 1792-1796. https://doi.org/10.1002/marc.200400333
  6. Nisal, A., Trivedy, K., Mohammad, H., Panneri, S., Sen Gupta, S., Lele, A., Manchala, R., Kumar, N.S., Gadgil, M., Khandewal, H., et al. (2014). Uptake of Azo Dyes into Silk Glands for Production of Colored Silk Cocoons Using a Green Feeding Approach. ACS Sustain. Chem. Eng. 2, 312-317. https://doi.org/10.1021/sc400355k
  7. Oh, H., Kim, M.K., Lee, J.Y., Lee, K.H., (2009). The Role of Silk Sericin during the Spinning Process of Silk Fiber(I) -The Effect of Silk Sericin on the Crystallization and Gelation of Silk Fibroin- . Text Sci Eng. 46, 289-294
  8. Okabayashi, R., Nakamura, M., Okabayashi, T., Tanaka, Y., Nagai, A., and Yamashita, K. (2009). Efficacy of Polarized Hydroxyapatite and Silk Fibroin Composite Dressing Gel on Epidermal Recovery From Full-Thickness Skin Wounds. J. Biomed. Mater. Res. Part B 90B, 641-646. https://doi.org/10.1002/jbm.b.31329
  9. Tansil, N.C., Li, Y., Teng, C.P., Zhang, S., Win, K.Y., Chen, X., Liu, X.Y., and Han, M.-Y. (2011). Intrinsically Colored and Luminescent Silk. Adv. Mater. 23, 1463-1466. https://doi.org/10.1002/adma.201003860
  10. Tansil, N.C., Koh, L.D., and Han, M.-Y. (2012). Functional silk: colored and luminescent. Adv. Mater. Weinheim 24, 1388-1397. https://doi.org/10.1002/adma.201104118
  11. Tsukada, M., Obo, M., Kato, H., Freddi, G., and Zanetti, F. (1996). Structure and dyeability of Bombyx mori silk fibers with different filament sizes. J. Appl. Polym. Sci. 60, 1619-1627. https://doi.org/10.1002/(SICI)1097-4628(19960606)60:10<1619::AID-APP14>3.0.CO;2-#
  12. Wang, X., Kluge, J.A., Leisk, G.G., and Kaplan, D.L. (2008). Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29, 1054-1064. https://doi.org/10.1016/j.biomaterials.2007.11.003
  13. Wang, X., Yucel, T., Lu, Q., Hu, X., and Kaplan, D.L. (2010). Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31, 1025-1035. https://doi.org/10.1016/j.biomaterials.2009.11.002

Cited by

  1. Sericin Promotes Fibroin Silk I Stabilization Across a Phase-Separation vol.18, pp.8, 2017, https://doi.org/10.1021/acs.biomac.7b00549
  2. Multiscale Hybridization of Natural Silk-Nanocellulose Fibrous Composites With Exceptional Mechanical Properties vol.7, pp.None, 2015, https://doi.org/10.3389/fmats.2020.00098