• Title/Summary/Keyword: Azimuth fixed

Search Result 60, Processing Time 0.023 seconds

Tracking System Development for Optimal Efficiency of PV System (PV 시스템의 효율 최적화를 위한 추적 시스템 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Byung-Jin;Jung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.188-190
    • /
    • 2008
  • In this paper, it proposes a the high efficiency tracking system regarding power loss when operating a tracking system for environment variable such as a rapidly changing insolation to improve the power of PV tracking system. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this paper proposes a nonel control algorithm of the tracking system. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method. We show propriety of proposed algorithm by means of the demonstrable study.

  • PDF

Efficiency optimization control of photovoltaic tracking system with climate and environment variation (기후환경 변화에 대한 태양광 추적 시스템의 효율최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Jun, Young-Sun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.403-406
    • /
    • 2008
  • In this paper proposes a novel tracking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV tracking system. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this paper proposes a nonel control algorithm of the tracking system. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method. We show propriety of proposed algorithm by means of the demonstrable study.

  • PDF

Design of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Technique (퍼자-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 김휘동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.199-203
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle (궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Intelligent Control of Mobile Robot Based-on Neural Network (뉴럴네트워크를 이용한 이동로봇의 지능제어)

  • 김홍래;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.207-212
    • /
    • 2004
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법을 이용한 이동형 로봇의 자율주행 제어시스템 개발)

  • 김휘동;양승윤;전완수;안병국;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.130-134
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

The Indoor Position Detection Method using a Single Camera and a Parabolic Mirror (볼록 거울 및 단일 카메라를 이용한 실내에서의 전 방향 위치 검출 방법)

  • Kim, Jee-Hong;Kim, Hee-Sun;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • This article describes the methods of a decision of the location which user points to move by an optical device like a laser pointer and a moving to that location. Using a conic mirror and CCD camera sensor, a robot observes a spot of user wanted point among an initiative, computes the location and azimuth and moves to that position. This system offers the brief data to a processor with simple devices. In these reason, we can reduce the time of a calculation to process of images and find the target by user point for carrying a robot. User points a laser spot on a point to be moved so that this sensor system in the robot, detecting the laser spot point with a conic mirror, laid on the robot, showing a camera. The camera is attached on the robot upper body and fixed parallel to the ground and the conic mirror.

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

An Intelligent Control of TRack Vehicle Using Fuzzy-Neural Network Control Method (퍼지-신경회로망 제어기법에 의한 궤도차량의 지능제어)

  • 신행봉;김용태;조길수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.210-215
    • /
    • 1999
  • In this paper, a new approach to the dynamic control technique for track vehicle system using fuzzy-neural network control technique is proposed. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Design of Fuzzy-Neural Control Technique Using Automatic Cruise Control System of Mobile Robot

  • Kim, Jong-Soo;Jang, Jun-Hwa;Lee, Jin;Han, Sung-Hyung;Han, Dunk-Ki;Kim, Yong-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.69.3-69
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF