• Title/Summary/Keyword: Axisymmetric Profile

Search Result 34, Processing Time 0.028 seconds

Measurement of Velocity Profile in Liquid Metal Flow Using Electromagnetic Tomography (전자기 토모그래피를 이용한 액체 금속 속도장 측정)

  • Choi, Sang-Ho;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1749-1754
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output for a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was $54^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

  • PDF

Measurement of velocity Pronto in Liquid Metal Flow Using Electromagnetic Tomography (전자기 토모그래피를 이용한 액체 금속 속도장 측정)

  • Ahn Yeh-Chan;Kim Moo Hwan;Choi Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1271-1278
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output fur a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was 54$^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

A Study on Automated Outer Diameter Measurement System for Axisymmetric Automotive Part (자동차용 축대칭 형상 부품 외경 자동측정시스템에 관한 연구)

  • Ban, Kap-Soo;Bae, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.61-68
    • /
    • 2013
  • Automatic measurement system is required since cycle time and cost of production are increased by various factors in manual systems. This paper presents a machine vision based prototype measurement system for the automotive axisymmetric shape parts which are generally measured by a manual system that is required the tolerance of the part is very small on each machined surface. This measurement system adopts a method in which optical lens is transferred along the profile of the part to minimize measurement cycle time. The main interest of this paper is a development of an optimum measurement algorithm to the outside diameter of the parts that can be applied to various combinations of hardware. The operating system used to implement the whole system is Window XP and corresponding environment.

An Analysis of the Square Die Extrusion of Non-Axisymmetric Bars from Circular Billets at Final-Stage (원형 소재에서 비축대칭 봉재의 최종단계 평금형 압출 해석)

  • 김동권;배원병;김영호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.143-149
    • /
    • 1995
  • A simple kinematically admissible velocity field is proposed to drtermine the final-stage extrusion load and the average extruded length in the square-die forward extrusion of non-axisymmetric bars from circular billets. The proposed velocity field is applied to the square-die extrusion of trochoidal gear-shaped bars and rectangular-shaped bars, the profile function of a rectangular being approximated by using a Fourier series. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreements in average extruded length between theory and experiment.

  • PDF

An Upper Bound Analysis of the Final-Stage Square Die Extrusion of the Non-Axisymmetric Bars (비축대칭 형상을 가진 제품의 최종단계 평금형 압출에 관한 상계해석)

  • Kim, Dong-Kwon;Bae, Won-Byong;Kim, Young-Ho
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.390-397
    • /
    • 1995
  • A simple kinematically admissible velocity field is proposed to determine the final-stage extrusion load and the average extruded length in the square-die forward extrusion of non-axisymmetric bars from circular billets. The proposed velocity field is applied to the square-die extrusion of trochoidal gear-shaped bars and rectangular-shaped bars. The profile function of a rectangle is approximated by using a Fourier series. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreements in average extruded length between theory and experiment.

  • PDF

Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting

  • Lian, Yong-Sheng;Sun, Jun-Yi;Dong, Jiao;Zheng, Zhou-Lian;Yang, Zhi-Xin
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.693-698
    • /
    • 2019
  • In this study, the problem of axisymmetric deformation of prestressed $F{\ddot{o}}ppl-Hencky$ membrane under constrained deflecting was analytically solved and its closed-form solution was presented. The small-rotation-angle assumption usually adopted in membrane problems was given up, and the initial stress in membrane was taken into account. Consequently, this closed-form solution has higher calculation accuracy and can be applied for a wider range in comparison with the existing approximate solution. The presented numerical examples demonstrate the validity of the closed-form solution, and show the errors of the contact radius, profile and radial stress of membrane in the existing approximate solution brought by the small-rotation-angle assumption. Moreover, the influence of the initial stress on the contact radius is also discussed based on the numerical examples.

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

Analysis of axisymmetric closed-die forging using UBET (UBET를 이용한 축대칭 형단조 해석)

  • 김동원;김헌영;신수정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.337-344
    • /
    • 1989
  • The upper bound elemental technique (UBET) is used to simulate the bulk flow characteristics in axisymmetric closed die forging process. Internal flow inside the cavity is predicted using a kinematically admissible velocity field that minimizes the rate of energy consumption. Application of the technique includes an assessment of the formation of flash and of degree of filling in rib-web type cavity using billets with various aspect rations. The technique considering bulging effect is performed in an incremental manner. The results of simulation show how it can be used for the prediction of forging load, metal flow, and free surface profile. The experiments are carried out with plasticine. There are good agreements in forging load and material flow in cavity between the simulation and experiment. The developed program using UBET can be effectively applied to the various forging problems.