• 제목/요약/키워드: Axisymmetric Forming

검색결과 77건 처리시간 0.024초

다운동 방식 회전단조기 개발 (Development of Rotary Forging Press with Multi-Rocking Motion)

  • 이윤우;김소겸;최상수;박준수;김윤배;임성주;윤덕재;김승수;박훈재
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.47-54
    • /
    • 1995
  • Rotary forging process has many advantages such as compacting of machine, low price of facilities and good quality of products. The last presented was a technical report about rotary forging press in the 100-ton class, which has the only orbital motion limited to the forming of axisymmetric parts. In this paper, the newly developed rotary forging press is introduced. The maximum capacity of forming load is 280 ton and five locking motion, this is, orbital, straight pivot, spiral and two kinds of clover can be available. This machine consists of transmission, double eccentric bush, rocking shaft, die set and hydraulic unit. Especially, the supports of rocking shaft and double eccentric bush are so crucial that hydrostatic bearings are adopted. Finally, it is expected that the technical know-how obtained in this research can be applied to the manufacturing of the another machine with large capacity.

신경망을 이용한 열간단조품의 초기 소재 설계 (Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product)

  • 김동진;김벙민;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 1995
  • In the paper, we have proposed a new technique to detemine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed totrain the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energyas well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of te neural network. The amount of incomplete filling in the die, load and forming energyas well as effective strain are measured by the rigid-plastic finite element method. The new technique is applied tofind the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determing the optimal billet of forging products, further it is usefully adapted to physical modeling for the forging design.

  • PDF

클래드 강판재에 의한 축대칭 디프드로잉의 탄소성 유한요소해석 (An Elasto-Plastic Finite Element Analysis on Deep Drawing of Clad Sheet Metal)

  • 류호연;김영은;김종호;정완진
    • 소성∙가공
    • /
    • 제10권5호
    • /
    • pp.411-417
    • /
    • 2001
  • A Comparative study on deep drawing of clad sheet is carried out to investigate the forming characteristics and the effectiveness of modified finite element analysis. An elasto-plastic finite element analysis Is developed to analyze the forming of clad sheet using explicit scheme and layered shell. Axisymmetric deep drawing of stainless clad metal sheet is performed and thickness distribution is obtained. The corresponding finite element analysis shows good agreement with the results. Some disagreement can be explained by the assumption of shell element and the complexity of deformation of clad sheet.

  • PDF

다단계 디프드로잉의 공정해석에 관한 연구 (A Study on the Process Analysis of Multi-Stage Deep Drawing)

  • 심재진;전병희;김낙수
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2936-2948
    • /
    • 1993
  • Multi-stage deep drawing is an important sheet metal forming process. The deformation mechanisms of sheet metals during forming processes are complicated mainly due to the geometry and the lubrication of tools involved, the formability and the anisotropic behaviour of the material. The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. The anisotropic behaviour represented by r-value can be incorporated into the formulation. Punch/die loads and thickness distributions were obtained as results of simulating axisymmetric deep drawing processes. The computed results showed good agreements with experiments.

금형 및 공정변수에 따른 층상복합재료의 압출성형 특성에 관한 연구 (A study on the extrusion forming characteristics of construction materials with die and process parameters)

  • 고병두;이하성
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. The main design parameters influencing on deformation pattern are diameter ratio of the composite components and semi-die angle. Efforts are focused on the deformation patterns, velocity gradient, predicted forming load and the end distance through the various simulations. Simulation results indicate that there is an obvious difference of forming pattern with various diameter ratio and semi-die angle. The analysis in this paper is concentrated on the evaluation of the design parameters on the deformation pattern of composite rod.

  • PDF

AutoLISP을 이용한 전방압출 금형의 자동설계 연구 (Automated Design of Forward Extrusion Die by AutoLISP Language)

  • 김종호;류호연;홍기곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.584-588
    • /
    • 1997
  • Lots of forginfs used in automobile and aerospce industries are made in hot or cold working conditions, depending on the size and shape of a product. Usually the die design for new items has been first made on the basis of experiences and many know-hows accumulated in the company and then slightly modified through trial and error method to get the desired forgings without defects. Most of drawings at the die design stage have been manually drawn, butrecently some of forging companies have begun to apply a computer-aided drafting technique to the die design for reducing drafting time as well as repeatedly utilizing standardized parts form registerd data base. In this paper the automated die design technique for forward extrusion of axisymmetric forgings is developed by using AutoLISP language. For this study the representative die system is determined form the investigation of several types of forging dies being currently employed in the metal forming field and the design rules for cold extrusion die are summarized and programmed on a personal computer. A few design examples of forward extrusion die are given and discusses.

  • PDF

가중잔류항법을 이용한 곡면금형의 축대칭 전방압출해석 (Analysis of axisymmetric extrusion through curved dies by using the method of weighted residuals)

  • 조종래;양동열
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.509-518
    • /
    • 1987
  • 본 연구에서는 냉간 축대칭 전방 압출에 가중잔류항법을 적용하여 재료의 가 공 경화 및 강소성 경계를 고려하는 프로그램을 개발하여 변형도, 응력, 변형력, 강소 성 경계등을 FEM과 동일한 조건에서 비교 해석하고 다른 공정에 적용할 수 있게 하고 또한 곡면다이와 원추형다이를 설계 제작하여 다이의 형상과 단면 감소율이 변형도와 응력 분포에 미치는 영향을 검토하고 압출된 제품의 성질을 분석하여 실제 공정에 이 바지하며 이론 계산과 실험을 비교함이 목적이다.

냉간 압출된 유성기어의 내부결함 방지 (Prevention of Internal Defects of Cold Extruded Planetary Gears)

  • 이정환;최종웅;이영선;최상호
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.168-173
    • /
    • 1999
  • It is investigated that internal defect of planetary gear which consists of two gears with different number of teeth on both side. The internal defect, central burst, begin to form at the place of adiabatic shear band which usually has maximum ductile fracture value during the forming operation, forward and backward extrusion. It makes the plastic forming of planetary gear difficult. The prediction of defect to minimize the cost to produce the planetary gear. The finite element simulation code DEFORM is applied to analyze the defects. In the analysis, the toothed gears are assumed as axisymmetric cylinders whose diameters are equal to those of pitch circles of the each gears. Experiments were carried out with the SCM415 alloy steel as billet material and AIDA 630-ton knuckle-joint press. The calculated results and experimental inspections are compared to design a die and blank without defects and the results are useful to predict the internal defect.

  • PDF

스프링부착 금형을 가진 다단 축대칭 단조공정의 유한요소해석-단조시뮬레이터 공정적용 사례(3) (Finite Element Analysis of a Multi-Stage Axisymmetric Forging Process Having A Spring-Attached Die)

  • 전만수;이석원;정재헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.93-100
    • /
    • 1996
  • In this paper, a computer simulationtechnique for the forging process having a spring-attached die was presented . The penalty rigid-thermoviscoplastic finite element method was empolyed together with an interatively force-balancing method, in which the convergence was achieved when the forming load and the spring reaction force are in equilibrium within the user-specified allowable accuracy. The force balance was controled by adjusting the velocity of the spring-attched die. th minimize the number of internations, a velocity estimating schemewas proposed. Two application examples found in the related company were given. In the first application example, the predicted metal folw lines were compared with the acturally forged ones. in the second example, a hot forging process with a spring-attached die was simulated and the analyzed results were discussed in order to investigated the effects of spring-attached dies on the metal flow lines and the forming loads.

  • PDF

스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석 (Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force)

  • 장성민;김민철;이민철;전병윤;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF