• Title/Summary/Keyword: Axial turbo fan

Search Result 13, Processing Time 0.026 seconds

Study on the Optimal Shape of Low Noise, New Concept Fan for Refrigerator (냉장고용 저소음 신형상홴의 최적 형상에 관한 연구)

  • 정용규;김창준;백승조;전완호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.645-650
    • /
    • 2002
  • In this paper, new concept, low noise axial fan was developed. The fan was designed to operate at high-pressure condition inside the refrigerator. This fan - we call it Alpha fan - has small turbo blades at trailing edge of axial fan. These turbo blades make alpha fan operate at high pressure and low noise condition. In order to find out the optimal value of design parameters, 6-sigma method was used. The design parameters are ratio between inner and outer diameter, Height, Install angle and Install position of turbo blade. Optimal value of turbo blade was found out and the noise generated from this fan is reduced about 3dB(A).

  • PDF

Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 실험적 연구)

  • Choi, Jin-Yong;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.441-446
    • /
    • 2000
  • The experiments of the Aerodynamic characteristics of a counter-rotating axial fan were carried out. The performance tests of a single and a counter-rotating axial fan were carried out based on the Korean Standard Testing Methods for Turbo-fans and Blowers(KS B 6311). The performances of single and counter-rotating axial fans were obtained and compared with each other. The flow fields of a counter-rotating axial fan at the peak efficiency point were measured using a five-hole probe. As a result, compared with the performance of a single-rotating axial fan, that of a counter-rotating axial fan was superior. And it is confirmed that most of the swirl flow generated by the front rotor was eliminated by the rear rotor.

  • PDF

Performance of an Axial Turbo Fan by the Revision of Impeller Pitch Angle (피치각 수정에 따른 축류식 터보팬 성능 변화에 관한 연구)

  • Kang Seok-Youn;Lee Tae-Gu;Ryu In-Keun;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.268-276
    • /
    • 2005
  • The aim of this paper is to suggest one efficient method for the various requirements of performance during the process designing and producing an impeller. The study considers that the revisions of a pitch angle of an impeller at an axial turbo fan affect an air flow rates and a static pressure rise. The axial turbo fan specified with the 250 Pa maximum static pressure and 1300 CMH fan air flow rates was tested and analyzed by CFD. The Numerical results show that the air flow rates are calculated to 1,175 CMH, 1,223 CMH, 1,270 CMH, 1,340 CMH and 800 CMH in cases that the pitch angles are $44^{\circ},\;49^{\circ},\;54^{\circ},\;59^{\circ},\;and\;64^{\circ}$ respectively. Also the static pressure rises are shown to 108 Pa, 122Pa, 141 Pa, 188 Pa and 63 Pa at the same cases. The air flow rate is increased linearly according to the changes of the pitch angle from $44^{\circ}\;to\;59^{\circ}$ and the maximum air flow rate passing the impeller is increased to $13\%$ over at the case of $59^{\circ}$ pitch angle compared with the reference case of $54^{\circ}$ pitch angle. The static pressure rise is increased linearly according to the changes of the pitch angle from $44^{\circ}\;to\;54^{\circ}$, too. The static pressure rise at the $59^{\circ}$ pitch angle is increased to $33\%$ over compared with the $54^{\circ}$ pitch angle. The result shows that the revisions of pitch angle make the static pressure rise increase widely. However the air flow rates and the static pressure rise at the $64^{\circ}$ pitch angle are suddenly decreased because of over-changed pitch angle.

Experimental Study on the Aerodynamic Characteristics of a Two Stage and a Counter-Rotating Axial Flow Fan (2단 축류팬과 엇회전식 축류팬의 공력 특성에 관한 실험적 연구)

  • Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.541-547
    • /
    • 2000
  • Experiments were done for the comparison of performance and flow characteristics between a two stage axial flow fan and a counter-rotating axial flow fm. The fan performance curves were obtained by the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fan flow characteristics were measured using a five-hole probe by the non-nulling method. Each stage of the two stage axial flow fan used for the present study has an eight bladed rotor and thirteen stator blades. The front and the rear rotor of the counter-rotating axial flow fan have eight blades each and are driven by coaxial counter rotating shafts through a gear box located between the rear rotor and the electric motor. Both of the two axial fan configurations use identical rotor blades and the same operating conditions for the one-to-one comparison of the two. Performance characteristics of the two configurations were obtained and compared by varying the blade setting angles and axial gaps between the blade rows. The passage flow fields between the hub and tip of the fans were measured and analyzed for the particular operating conditions of peak efficiency, minimum and maximum pressure coefficients.

  • PDF

Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Flow Fan (엇회전식 축류 펜의 공력 특성에 관한 실험적 연구)

  • Choe, Jin-Yong;Jo, Lee-Sang;Jo, Jin-Su;Won, Yu-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.201-210
    • /
    • 2002
  • Experiments were done for performance and flow characteristics of a counter-rotating axial flow fan. Performance curves of a counter-rotating axial flow fan were obtained and compared by varying the blade pitch angles. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fan flow characteristics were measured using a five-hole probe and a slanted hot-wire. The velocity profiles between the hub and tip of the fans were measured and analyzed at the peak efficiency point. The peak efficiency of the counter-rotating axial flow fan was improved about 15% respectively, compared with the single rotating axial fan. The single rotating axial flow fan showed relatively law efficiency due to the swirl velocities behind rotor exit which produced pressure losses. The counter-rotating axial flow fan showed that the swirl velocity generated by the front rotor was eliminated by the rear rotor and the associated dynamic pressure is recovered in the from of the static pressure rise.

Experimental Study on the Aerodynamic Characteristics of a Two-Stage and a Counter-Rotating Axial Flow Fan (2단 축류홴과 엇회전식 축류홴의 공력특성에 관한 실험적 연구)

  • Cho, Jin-Soo;Cho, Lee-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1281-1292
    • /
    • 2001
  • Experiments were done for the comparison of performance and flow characteristics between a two -stage axial flow fan and a counter-rotating axial flow fan. Each stage of the two -stage axial flow fan used fur the present study has an eight bladed rotor and thirteen slater blades. The front and the rear rotor of the counter - rotating axial flow fan have eight blades each and are driven by coaxial counter ro latins shafts through a gearbox located between the rear rotor and the electric motor. Both of the two axial fan configurations have identical rotor blades and the same operating condition fur the one -to-one comparison of the two. Performance curves of the two configurations were obtained and compared by varying the blade pitch angles and axial gaps between the blade rows. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fa n flow characteristics were measured using a five-hole probe by a non-nulling method. The velocity profiles between the hub and tip of the fans were measured and analyzed at the particular operating condition s of peak efficiency, minimum and maximum pressure coefficients. The peak efficiency of the counter-rotating axial fan was improved about 2% respectively, compared with the two stage axial fan. At the minimum pressure coefficient point of the two stage axial fan, the fan inlet flow patterns show that axial velocity highly decreased in the vicinity of the blade tip region. Also, the reverse flow took place at the blade tip.

A Numerical Method & Experiments for the Aerodynamic Design of High Performance 2-Stage Axial Flow Fans (고성능 2단 축류송풍기의 공력설계를 위한 수치해석 및 실험에 관한 연구)

  • Cho, Jinsoo;Han, Cheolhui;Cho, Leesang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1048-1062
    • /
    • 1999
  • A numerical method and experiments for the aerodynamic design of high performance two-stage axial flow fans was carried out. A vortex ring element method used for the aerodynamic analysis of the propellers was extended to the fan-duct system. Fan Performance and velocity profiles at the fan inlet and outlet are compared with experimental data for the validations of numerical method. Performance test was done based on KS B 6311(testing methods for turbo-fans and blowers). The velocity profile was obtained using a 5-hole pitot tube by the non-nulling method. The two stage axial flow fan configurations for the optimal operation conditions were set by using the experimental results for the single rotating axial flow fan and the single stage axial flow fan. The single rotating axial flow fan showed relatively low efficiency due to the swirl velocities behind rotor exit which produced pressure losses. In contrast, the single stage and the two-stage axial flow fans showed performance improvements due to the swirl velocity reduction by the stator. The peak efficiency of the two stage axial flow fan was improved by 21% and 6%, compared to the single rotating axial flow fan and the single stage axial flow fan, respectively.

Investigation of Heating Performance of Kerosene Fan Heater (석유 홴 히터의 난방 능력 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.51-60
    • /
    • 1997
  • In this paper, we investigated the heating performance and the basic characteristics required for normal combustion of kerosene fan heater. And also the iso-velocity contours and the iso-temperature contours of hot gas discharged from the exit of kerosene fan heater were analyzed. The experiment was carried out with kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of $240mm{\times}240mm{\times}1200mm$. The purpose of this paper was to obtain the basic data for new design from conventional kerosene fan heater. Consequently it was found that (i) the pressure ratio $P_2/P_1$ had a comparatively constant value of 0.844 according to the increase of the revolution of turbo fan, (ii) the primary excess air ratio had a range of $0.84{\sim}1.11$ during normal combustion, and (iii) the heating performance of kerosene fan heater had a range of $1,494{\sim}3,852kcal/hr$.

  • PDF

A Study on the Noise Emission Characteristics of Turbo Axial Flow Fan by Experimental Method (터보형송풍기의 소음 방사특성에 관한 실험적 연구)

  • 김동규;백종진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-277
    • /
    • 2003
  • Recently as the environmental noise getting influential social problem, it is the fact that the demand on noise reduction increases with the advance of the standard of living. Therefore increasing the interest on the noise in common, it is eagerly demanded that the endeavour for reducing the noise of the rotating machinery, especially the machinery related a flowing including the household electric products, which is pointed out the primary noise source in environment. As proceeding study for fan noise, theory of fan noise property is arranged and this control method is shown. Blade passage noise of total noise spectrum. Thus in the aspect of noise reduction, noise source and identification of noise radiation characteristics of axial flow fan are demanded in detail. The sound source is analyzed by using sound pressure and sound intensity. In that time, synchronization of axial flow fan using optical sensor is executed, and to identify the location of exact noise source in the fan profile determination of recording time is proposed. In the rotating of tan, it is explained that the location of noise source exists in and by the directivity, the noise radiation pattern of axial flow fan is determined and the flow of sound is visualized in the figure of contour mapping.

  • PDF

Heat transfer characteristics around a circular combustion chamber of kerosene fan heater (석유 팬 히터의 연소실 주변 열전달 특성)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.