• Title/Summary/Keyword: Axial magnetic field

Search Result 169, Processing Time 0.023 seconds

The Magnetic Field Characteristics of Multipolar Axial Magnetic Field type Electrodes for Vacuum Interrupter (진공인터럽터용 다극 종자계전극의 자계분포 특성)

  • Kim, Sung-Il;Park, Hong-Tae;Ahn, Hee-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.92-94
    • /
    • 1999
  • This paper describes axial magnetic field characteristics of multipolar axial magnetic field type electrodes for vacuum interrupter used in vacuum circuit breaker. It was distinguished that axial magnetic field distribution in consideration of eddy current effect between electrodes by finite element method. Throughout experiment of magnetic field measurement, confirmed validity of numericla analysis.

  • PDF

A Study of the Characteristics on the Vacuum Interrupter with Axial Magnetic Field Type using 3 Dimension Finite Element Analysis (3차원 유한요소해석을 이용한 종자게형 진공 인터럽터의 특성고찰)

  • 하덕용;강형부
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.460-467
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density on the vacuum interrupter with axial magnetic field type using 3 dimension finite element analysis. An axial magnetic field parallel to the current flow in the arc column can improve the current breaking capacity of vacuum interrupter by affecting the arc mode. The axial magnetic flux density on the contact electrode surface is analyzed by inputting external current as a function of the transient time for sine half wave. And it also is analyzed within the gap distance of the contact electrode. The peak value of current but is decreased with the descending current on the contact electrode surface and within the gap distance of the contact electrode. The residual magnetic field is generated on the contact electrode surface and within the gap distance in the instant of zero current, which is due to the influence of eddy currents. The phase shift due to eddy currents, defined as time difference between the maximum value of current and axial magnetic field, is about 1ms in the center point of gap distance.

A Study on the Effect of the Contact Electrode Slits in the Vacuum Interrupter with Axial Magnetic Field Type (종자계형 진공 인터럽터에서 접점전극 슬릿의 영향에 관한 연구)

  • 하덕용;강형부;최승길;최경호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.822-829
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density for each slits made on the contact electrode in the vacuum interrupter with axial magnetic field type using 3-dimension finite element analysis. It has been known that the presence of an axial magnetic field parallel to the current flow in the arc plasma can increase the high current breaking capacity of vacuum interrupter by carrying out the arc plasma from constricted mode to diffusion mode. The axial magnetic field is created of itself by current flow in the segments of coil electrode behind the contact electrode. The analyzed results show that if the slits are made in the contact electrode, they can increase the current density and axial magnetic flux density in the contact electrode surface and at the gap distance, which is due to decrease the effect of eddy currents flowing in the contact electrode. The phase shift due to eddy currents, defined 3s time difference between the maximum value of current and axial magnetic field, is decreased still more by increasing the number of slits made in the contact electrode at the center point of gap distance. These results demonstrate that 3-dimension finite element analysis has a great deal of merits in the development and evaluation of new electrode at the design of vacuum interrupter.

Effects of axial external magnetic fields on plasma density on substrate in helical resonator plasma source (헬리칼 공명 플라즈마에서 축 방향의 외부 자장이 기판상의 플라즈마 밀도에 미치는 영향)

  • 김태현;태흥식;이용현;이호준;이정해;최경철
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.172-179
    • /
    • 1999
  • The axial distributions of plasma density in a helical resonator plasma with the external magnetic field have been measured using Langmuir probes. Net RF power is set to 200W and chamber pressure is varied from 0.4 mTorr to 100mTorr there are three kinds of eternal magnetic field structure applied on the helical resonator plasma. One is a uniform magnetic field, the second is a positive gradient magnetic field and the third is a negative gradient magnetic field. In the three magnetic field structures, the negative gradient magnetic field is found to show the highest increase in plasma density on the substrate compared with other magnetic structures. Plasma density profile in helical resonator is well consistent with electromagnetic field pattern obtained by computer simulation. It is also found that axial magnetic fields do not affect plasma density distribution in the plasma reactor region, but induce the increase of plasma density in the process chamber region. In order to avoid the nonuniformity of radial density profile, weak magnetic fields under 100G are applied.

  • PDF

A Study on the Development of Vacuum Interrupter with Axial Magnetic Field type (종자계방식 진공인터럽터 개발에 관한 연구)

  • Kim, Sung-Il;Park, Hong-Tae;Ahn, Hee-Il;Seo, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.943-945
    • /
    • 2000
  • In this paper described that study on the distribution and characteristics of axial magnetic field by mathematical analysis and experiment for axial magnetic field type vacuum interrupter that important part on vacuum circuit breaker. And, it was shown that inspected results of arc shape at breaking the current by typical axial magnetic field type model and new axial magnetic field type model.

  • PDF

Interaction of Magnetic Flux Ropes in Relation to Solar Eruption

  • Yi, Sibaek;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2018
  • Twisted magnetic flux tubes (also called magnetic flux ropes) are believed to play a crucial role in solar eruptive phenomena. The evolution of a single flux rope with or without the influence of an overlying field of a simple geometry has been extensively studied and its physics is rather well understood. Observations show that interacting flux tubes are often involved in solar eruptions. It was Lau and Finn (1996) who intensively studied the interaction between two flux ropes, whose footpoints are anchored in two parallel planes. In this too simplified setting, the curvature of the flux rope axial fields is totally ignored. In our study, the footpoints of flux ropes are placed in a single plane containing a polarity inversion line as in the real solar active region. Our simulation study is performed for four cases: (1) co-axial field and co-axial current (co-helicity), (2) counter-axial field and co-axial current (counter-helicity), (3) co-axial field and counter-axial current (counter-helicity), and (4) counter-axial field and counter-axial current (co-helicity). Except case 3, each case is found to be related with certain eruptive features.

  • PDF

The Development of Axial Magnetic Field Type Vacuum Interrupter (종자계형 진공인터럽터의 개발)

  • 박홍태;안희일;김성일;이경행
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.231-233
    • /
    • 2001
  • Axial magnetic field(AMF) type electrodes can be increase the interrupting capability of vacuum interrupters. Depending on the design, the principle of the local axial magnetic field arrangement are different. In this paper, a new AMF contact design based on a unipolar field arrangement and its characteristics are introduced. The influence of the unipolar AMF on the arc behavior is described by high-speed video camera. In addition, three-dimensional AMF simulations have been peformed by means of a finite element analysis(FEM) program to analyze the influence of magnetic field distribution on the AMF performance. The high interrupting capability of the unipolar AMF type electrode has been confirmed by three-phase test.

  • PDF

Effect of a Magnetic Field on the Solute Distribution of Czochralski Single Crystal Growth (초크랄스키 단결정 성장에서 자기장이 용질분포에 미치는 영향)

  • Kim, Moo Gewi;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.388-397
    • /
    • 1999
  • Numerical simulations are carried out for the magnetic Czochralski single crystal growth system. It Is shown that a magnetic field significantly suppresses the convective flow and as the strength of magnetic field becomes to be stronger, the heat transfer in the melt is dominated by conduction rather than convection. By imposing a cusp magnetic field, the growth interface shape becomes convex toward the melt. When the axial magnetic field is imposed, there occurs an inversion of the interface shape with increase of the magnetic field strength. The oxygen concentration near the interface decreases with increasing cusp magnetic field strength while axial field causes an increase of an oxygen concentration at the central region and decrease of that at the edge of the crystal. The results show that the cusp magnetic field has advantages over an axial magnetic field In the radial uniformity of oxygen as well as in the additional degree of control.

Simulation of Vacuum Arc Expansion with Magnetic Field (자계가 인가된 진공아크의 확장 모의)

  • 최원준;최승길;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.183-186
    • /
    • 1998
  • Axial magnetic field generated by special electrode construction in vacuum interrupters is used to extinguish electric plasma arcs. This investigation by FDM should prove to what extent the magnetic field might influence on the arc expansion. The calculated results show that the stronger magnetic field induced the lesser radius of arc plasma. This study will help to offer good data in design of vacuum interrupters.

  • PDF

Simulation of electromagnetic Phenomena in Vacuum interrupter with axial magnetic field type by Arc (아크 발생에 의한 축자계형 진공인터럽터의 전자계 현상 시뮬레이션)

  • Seo, Sang-Hyun;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, we performed analysis of electric field, magnetic field, current density in AMF electrode using the Maxwell 3D simulation. The current distribution and magnetic field in simple models are analyzed to verify its efficiency and accuracy. In the vicinity of the slits of axial magnetic field type electrode a comparatively high axial magnetic flux density existsIn addition the validity of FEM is confirmed by performing the analyses of distribution in current density and magnetic flux density.

  • PDF