• 제목/요약/키워드: Axial load test

검색결과 696건 처리시간 0.023초

선단지지된 항타개단강관말뚝의 축하중전이거동 (Axial Load Transfer Behavior for Driven Open-ended End bearing Steel Pipe Pile)

  • 임태경;정성민;정창규;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.589-596
    • /
    • 2002
  • In this study, static pile load tests with load transfer measurement were accomplished in the field. Yield pile capacity (or ultimate pile capacity) determined by load-settlement-time relationship was determined and axial load transfer behavior was analyzed. In the test for the four test piles were behaved as end bearing pile but ratios of skin friction to total pile capacity were 27%∼33%.

  • PDF

S.L. 도포 및 미도포 말뚝의 축하중전이거동 (The Behavior of Axial Load Transfer for S.L. Coated Pile And Uncoated Pile)

  • 배기열;김정환;이민희;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.373-380
    • /
    • 2002
  • In this study, In order to compare the behavior of axail load transfer for S.L. coated piles and uncoated piles installed at a field test site. During static pile load tests, axial load transfer for S.L. coated piles and uncoated piles were measured.

  • PDF

풍화암 소켓 대구경말뚝의 축하중 전이거동 (Axial Load Transfer Behavior of a Large Diameter Pile socketed into weathered rock)

  • 정창규;임태경;황근배;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.390-397
    • /
    • 2002
  • In this study, static pile load tests with load transfer measurement for a pile socketed into weathered rocks were performed. Axial load transfers during static pile load test were measured and analyzed. Three large diameter piles socketed into weathered rock were behavior behaved as friction pile.

  • PDF

대구경 말뚝정재하시험 및 하중전이 측정사례 (Static pile load test and load trasfer measurement for large diameter piles.)

  • 최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 말뚝기초 학술발표회
    • /
    • pp.107-141
    • /
    • 2000
  • Large diameter piles can be defined as piles with diameter of at least 0.76 m (2.5 ft). In bridge foundation, large diameter piles have been used as pier foundations and their use has been increased greatly. In this study, static pile load tests for large diameter piles peformed in Kwangan Grande Bridge construction site were introduced. Also, various sensor installation methods for several types of piles (that is, open-ended steel pipe pile, drilled shafts and socketed pipe piles), pipe axial load measuring method, load transfer analysis method and pile load test results (pile-head load - settlement curve, and pile axial load distribution curve along the pile depth) were introduced.

  • PDF

하상퇴적토층에 관입된 개단강관말뚝의 축하중 전이 거동 (Behavior of Axial Load Transfer for Open-ended Steel Pipe Pile in Alluvial Deposits)

  • 김상현;성인출;정창규;김명학;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.283-290
    • /
    • 2001
  • In this study, static Pile load tests and PDA for open-ended steel pipe pile($\phi$ = 609.6 mm, t = 14 mm) penetrated into the gravel layer(GP - GM) was accomplished and axial load distribution was measured. Based on the tests results, the ultimate bearing capacity and axial load bearing mode were examined. Also, the ultimate pile capacity was calculated by APIL $E^{PLUS}$./.

  • PDF

나선철근 원형교각의 연성 및 내진성능 (Ductility and Seismic Performance of Spirally Reinforced Bridge Columns)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.356-363
    • /
    • 2000
  • The objectives of this study are to investigate seismic performance of spirally reinforced bridge columns and to provide test result for developing improved seismic design criteria. Quasi-static test was conducted for 12 columns of which variables were transverse reinforcement ratio and spacing, longitudinal reinforcement ratio, and axial load level. Sufficient seismic performance was observed from the test for the columns with greater confinement steel amount than the requirement of the Korean Bridge Design Specification. The columns with 0.84% of the confinement steel requirement provided adequate performance under less than 0.2 of axial load level, but showed lower ductility under 0.3 of axial load level. The current provision for the region of confinement steel distribution may be non-conservative under high axial load level, therefore a modified provision is proposed.

  • PDF

등가변형을 이용한 테이터 말뚝의 지지력 산정 (Estimation of Axial toad Capacity for Tapered Piles Using Equivalent Transformation)

  • 전성남;서경범;송원준;이준환
    • 한국지반공학회논문집
    • /
    • 제25권8호
    • /
    • pp.57-64
    • /
    • 2009
  • 본 연구에서는 등가변형을 이용하며 테이퍼 말뚝의 지지력을 산정하는 방법을 제안하였다. 지반조건과 테이퍼각도를 고려하여 지지력을 산정하던 기존의 방법과 달리, 테이퍼말뚝의 지지력산정시 콘관입시험 결과를 활용하도록 하였다. 이때 테이퍼말뚝은 등가변형을 이용하여 형태를 단순화 시켰으며 이를 통해 실무에서 비교적 쉽게 지지력을 산정 할 수 있는 방법을 제안하였다. 제안된 방법의 검증을 위해 실내시험과 현장시험을 실시하였다. 실내모형시험 결과로부터 측정된 극한지지력과 본 연구에서 제안된 방법에 의한 예측값을 비교한 결과 표준편차는 $0.05{\sim}0.121$, COV는 $0.04{\sim}0.05$의 값을 보여 대체적으로 유사한 결과를 보였으며, 현장시험은 약 2.5%의 오차를 보여 측정값에 근접함을 알 수 있었다. 그 결과 제안된 지지력 산정법은 테이퍼말뚝의 지지력을 비교적 정확하게 예측하는 것으로 나타났다.

축력비 조건에 따른 철근콘크리트기둥의 내화성능에 관한 연구 (A Study on the Fire Resistance Performance of Reinforced Concrete Columns according to Axial Load Ratio)

  • 황규재;조범연;여인환
    • 한국화재소방학회논문지
    • /
    • 제27권6호
    • /
    • pp.26-31
    • /
    • 2013
  • 본 연구의 목적은 성능적 내화설계를 기반으로 한 철근콘크리트 기둥의 내화성능 평가를 최종 목표로 철근콘크리트 기둥의 열전달 해석을 통한 온도분포와 재하가열실험을 통한 수축량으로 적정 축력비를 도출하여 성능설계를 위한 기초 자료로 활용하고자 하는데 있다. 편심이 전혀 없는 순수축력을 기준으로 축력비 0.30, 0.35, 0.40, 0.47을 재하한 결과, 0.40 이상의 축력비를 확보하여야 내화성능을 만족할 수 있다고 판단하였다.

오스트버그식 재하시험을 이용한 대구경 현장타설말뚝의 축하중전이거동 (Axial Load Transfer Behavior of a Large Diameter Drilled Shaft by Osterberg Type Load Test)

  • 임태경;정창규;정성민;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.447-454
    • /
    • 2003
  • In this test, two separated oil jacks were placed at bottom of drilled shaft(D = 1,500mm, L = 33m), and maximum upward and downward load of 1,250 tonf was applied. Also, the deformable rod sensors were placed on each level, and axial strains at each level were measured. Because the side skin friction and the end bearing could be measured separately in the Osterberg type pile load test, this test might be more economical and more applicable than a conventional static pile load test. Thus, if this Osterberg type pile load test could be established during design stage, construction cost might be reduced and its application for large diameter pile could be enhance greatly.

  • PDF

Seismic behavior of composite walls with encased steel truss

  • Wu, Yun-tian;Kang, Dao-yang;Su, Yi-ting;Yang, Yeong-bin
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.449-472
    • /
    • 2016
  • This paper studies the seismic behavior of reinforced concrete (RC) walls with encased cold-formed and thin-walled (CFTW) steel truss, which can be used as an alternative to the conventional RC walls or steel reinforced concrete (SRC) composite walls for high-rise buildings in high seismic regions. Seven one-fourth scaled RC wall specimens with encased CFTW steel truss were designed, manufactured and tested to failure under reversed cyclic lateral load and constant axial load. The test parameters were the axial load ratio, configuration and volumetric steel ratio of encased web brace. The behaviors of the test specimens, including damage formation, failure mode, hysteretic curves, stiffness degradation, ductility and energy dissipation, were examined. Test results indicate that the encased web braces can effectively improve the ductility and energy dissipation capacity of RC walls. The steel angles are more suitable to be used as the web brace than the latticed batten plates in enhancing the ductility and energy dissipation. Higher axial load ratio is beneficial to lateral load capacity, but can result in reduced ductility and energy dissipation capacity. A volumetric ratio about 0.25% of encased web brace is believed cost-effective in ensuring satisfactory seismic performance of RC walls. The axial load ratio should not exceed the maximum level, about 0.20 for the nominal value or about 0.50 for the design value. Numerical analyses were performed to predict the backbone curves of the specimens and calculation formula from the Chinese Code for Design of Composite Structures was used to predict the maximum lateral load capacity. The comparison shows good agreement between the test and predicted results.