• Title/Summary/Keyword: Axial flux motor

Search Result 67, Processing Time 0.035 seconds

Characteristic of Dual Air Gap AFPM along Flux Position Estimation (양면 축방향 영구자석 전동기에서 자속위치 검출에 따른 특성)

  • Hong, Mun-Hwan;Kim, Chul-Ho;Lee, U-Seok;Kong, Jeong-Sik;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.828-830
    • /
    • 2002
  • Axial Flux Permanent Magnet motor could widely be used for low speed and high torque applications. In this paper, to analyse the sensor positioning effect of AFPM motor which has a new concentric winding method and to calibrate the switching timing according to speed, prototype motor is manufactured. As a result of experiment, advance angle from 30 degree to 45 degree of sensor position is more proper. So, this results can be used for design of sensor position to improve characteristic of the dual gap AFPM with coreless and slotless.

  • PDF

Design and Analysis of AFPM Coreless Motor for Electric Scooter

  • Kim, Chul-Ho;Oh, Chul-Soo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.90-96
    • /
    • 2003
  • This paper deals with the design and the characteristic analysis of a coreless axial flux permanent magnet (AFPM) motor. Because a direct-drive wheel motor is easily derived from it, the AFPM motor is very suitable for application in an electric scooter. Compared to a conventional motor of the same size and weight, the AFPM motor is proven to have more power and torque per unit weight. In this paper, an AFPM coreless motor with a double-sided rotor disk equipped with Nd-Fe-B rare earth magnets is designed and a prototype of the motor is manufactured, which will be properly applied for the low-speed, and high-torque direct drive required for the electric scooter. The manufactured prototype of the motor has a rating of 300W, 510rpm, 5.6Nm, and 85% efficiency.

Cogging Torque Optimization of Axial-Flux Motor (축방향 자속형 전동기의 코깅 토크 최적화)

  • Kim, Il-Woo;Woo, Dong-Kyun;Jung, Huyn-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.826-827
    • /
    • 2011
  • The selection of optimum parameters in electromagnetic design usually requires optimization of multimodal, non linear functions. This leads to extensive calculations which pose a huge inconvenience in the design process. This paper proposes a novel algorithm for dealing efficiently with this issue. Through the use of contour line concept coupled with Kriging, the algorithm finds out all the peaks in the problem domain with as few function calls as possible. The proposed algorithm is applied to the magnet shape optimization of an axial flux permanent magnet synchronous machine and the cogging torque was reduced to 79.8% of the initial one.

  • PDF

Development of the Foldable Manual/Power Hybrid Wheelchair ($\cdot$전동 복합기능의 접이식 휠체어 개발)

  • Choi Young Chul;Rhee Kun Min;Choi Hwa Soon;Seo Young Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.172-180
    • /
    • 2006
  • Although there existed many types of manual/power hybrid wheelchairs, their use was not widespread because of their inconvenience in converting drive system and in folding frames. To carry a wheelchair in the car or to convert driving methods, some hard work of disassembling or exchanging wheels was required for most of currently available hybrid wheelchairs. In this study, the standard foldable manual wheelchair was reformed to a power wheelchair by installing the newly developed Axial Flux Permanent Magnet(AFPM) type of brush less direct current(BLDC) motor on each rear hub of wheelchair. This wheelchair could be driven by manual or electric power without exchanging. wheels, thus no additional work was needed for carriage or for power conversion. The developed wheelchair was evaluated for durability, stability, maneuverability, cost, and reliability in accordance with the Korean standards. The results indicated that the developed hybrid wheelchair was good enough for commercialization comparing to other imported wheelchairs.

Static and Dynamic Analysis Axial Flux Reluctance Motor Considering nonliearity (비선형을 고려한 축방향 릴럭턴스 전동기의 정.동특성 해석)

  • Kim, Kyung-Ho;Yu, Sun-Ki;Cho, Yun-Hyun;Kang, Do-Hyun;Kim, Jong-Mu;Jeong, Yen-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.12-14
    • /
    • 1999
  • The paper is described about the characteristics analysis of Axial Fluk Reluctance Motor(AFRM) with nonlinear analytical modeling. The parameter of the modeling is computed by the finite element method as functions of input current and angular displacement. To investigate the dynamic characteristics of AFRM, the current, torque, back EMF and output power wave is simulated from the motion equation by MATLAB/Simulink.

  • PDF

Calculation of Electromagnetic Excitation Forces in Double Skewed Motors

  • Bao, Xiaohua;Di, Chong;Zhou, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.812-821
    • /
    • 2018
  • An electromagnetic excitation force is caused by the air-gap flux density, which greatly influences the noise and vibration of the motor. In many real projects, skewed slot technology is widely used to reduce the harmonic components of the air-gap flux density to reduce the noise and vibration of the motor. However, a skewed slot has several side effects such as a transverse current and axial drifting. Thus, a double skewed slot rotor is selected with the aim of eliminating these side effects. This paper presents the exact structure of the double skewed slot rotor and the mechanism whereby the electromagnetic excitation force can be reduced. A multi-slice method is adopted to model the special structure. Finite element simulation is used to verify the theory.

Characteristics Analysis of Disk-type Single Phase SRM (Disk형 단상 스위치드 리럭턴스 전동기의 특성 해석)

  • Lee, Chung-Won;Lee, Eun-Woong;Lee, Jong-Han;Oh, Young-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.988-990
    • /
    • 2003
  • Disk type Single Phase SRM(Switched Reluctance Motor) can be used axial and radial direction magnetic flux. Therefore, the energy density per unit of volume is high and the axis can be shorter than that of any other motor. In this paper, the flux-linkage was measured according as rotor positions of disk type single phase SRM, which is designed and fabricated in previous studies. From the measured data, we got the magnetization curves, inductance profile, co-energy and torque. Also, we compared the value of the measurement with the value of analysis through 3D FEM simulation.

  • PDF

Analysis of characteristics of Multi-layer AFPM Motor (Axial flux BLDC 전동기의 토크특성개선에 관한 연구)

  • Yoo, Hyune-O;Kong, Jeong-Sik;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.397-399
    • /
    • 1999
  • This paper deals with the torque characteristics of a AFPM motor excited by permanent magnets. According to relative angle difference of two rotor, torque characteristics are studied. According to varied angle of two rotor, torque ripple and, total torque of AFPM motor is different. For minimum torque ripple, angle of two rotor of AFPM motor are investigated. For this study, we used to Maxwell EM 3D program. A prototype AFPM motor have been assembled and driving power supply are made. Characteristics of magnetical and electrical characteristic are investigated.

  • PDF

Characteristics Analysis on Teeth Width of Permanent Magnet DC Motor (영구자석 직류전동기의 치폭에 따른 특성해석)

  • Chun, Kyu-Hyuk;Seo, Young-Taek;Bae, Sang-Han;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.882-884
    • /
    • 2000
  • This paper deals with the effect of teeth width variation in Permanent Magnet DC motor. As teeth width varies, effective flux density is influenced, which is closely related to torque-speed characteristics, output power, and efficiency of the motor. In this study. motor design was carried out using finite element method with various teeth width. Prototype motors under constraints of same armature diameter, material and axial length were made and their performances were tested.

  • PDF

Electric Vehicle-Drone Transforming Mobility with AFPM (AFPM을 적용한 전기차-드론 트랜스포밍 모빌리티)

  • Myeong-Chul Park;Jun-Ho Lee;Ui-Yeon Gwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.271-272
    • /
    • 2024
  • 현재 자동차 산업은 내연기관에서 전기차 시스템으로 접어들고 있다. 전 세계적으로 탄소 중립 정책이 이를 가속화하고 있으며, 자동차 제조사들은 기존 내연기관 시스템으로는 불가능했던 기술들을 개발하고 있다. 대부분의 전기차에는 PMSM이 적용되고 있는데 부피가 크고 무거우며 토크 밀도가 낮다는 단점이 있다. AFPM은 기존 PMSM의 단점을 개선한 모터로, 부피와 무게가 작으며 토크밀도가 높다는 장점이 있어 전기차의 In-Wheel Motor System과 UAM에 적용되는 모터이다. 하지만 전기차는 도로 주행만 가능하고 UAM은 비행만 할 수 있기 때문에, 미래 모빌리티인 전기자동차와 UAM이 통합된 모빌리티를 개발하고자 한다. 본 과제에 적용되는 AFPM모터는 PMSM의 단점을 보완할 수 있기 때문에 전기차-UAM 트랜스포밍 모빌리티의 모터로 적합하다. 이 모빌리티는 자동차와 UAM의 역할을 모두 수행할 수 있어 효율적인 이동을 돕고 도시의 교통 인프라 문제를 완화할 수 있다.

  • PDF