• Title/Summary/Keyword: Axial cylinder

Search Result 253, Processing Time 0.024 seconds

Experimental study of the Concentric Cylinder Flow with Various Axial Slit Wall (다양한 축방향 홈이 있는 동심원통 내부 유동에 대한 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.123-127
    • /
    • 2007
  • The effect of axial slit wall of outer cylinder on Taylor-Couette flow was experimentally investigated. The axial slits were azimuthally located along the inner wall of outer cylinder and the number of slits was 6, 9 and 18. The radius ratio and aspect ratio of the experimental models was 0.825 and 48, respectively. We used PIV method to measure the flow field and applied refractive index matching method to resolve the image distortion due to the complex model geometry. The results showed the effect of slit on the flow transition is increased as the number of slit increased. When the model has 6 slits, there were hardly the effect of axial slit wall and the flow transition happened at the same Reynolds number of plain smooth wall model case.

  • PDF

A study on the characteristics of dynamic pressure in cylinder pen of hydraulic axial piston pump (유압 액셜 피스톤 펌프의 실린더 포트 내부 비정상 압력특성에 관한 연구)

  • 김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.209-214
    • /
    • 1999
  • Dynamic pressure is one of the major sources on noise emission in hydraulic axial piston pump. This paper reports an experimental study of dynamic pressure characteristics in the cylinder port of hydraulic axial piston pump. We investigated dynamic pressure with not only the effect of delivery pressure, rotational speed and temperature but also V-notches at the ends of the kidney ports in the valve plate. We experimented three valve plates with three type V-notches at the ends of the kidney ports, because V-notches of the valve plate is known of noise reduction. Finally, we hope this paper help to design of the valve plate in hydraulic axial piston pump.

  • PDF

Dynamic Stability Analysis of Annular Cylindrical Fuel Rod in Axial Flow (축류에 놓인 환형 실린더 연료봉의 동적 안정성 기초해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Lee, Young-Ho;Kim, Jae-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.264-267
    • /
    • 2008
  • Dual-cooled fuel with inner and outer flow channel was proposed for high burup, next generation nuclear fuel design. The annular cylinder of dual cooled fuel has higher structural strength compared to the conventional one, but also have concerns about flow induced vibration due to an additional flow of inner channel and the difference of flow velocity in between inner and outer channel. In this study, the dynamic stability of flexible, annular cylinder was evaluated according to the flow variation and compared to the that of the conventional PWR fuel rod. Centrifugal and Coriolis force by the additional flow in the inner channel were added in the dynamic equation of flexible beam in uniform, external, and axial flow. Complex eigenfrequency was calculated by the finite element method. Stability margin of annular cylinder compared to the solid cylinder and change of the dynamic characteristic are presented and discussed as a analysis results.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part I-Without Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part I-와류가 없는 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This paper is the first of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualization for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. For no swirl port, the axial penetration depends on the fuel injection timing. The fuel tends to remain in the upper region of the cylinder far from the spark plug and the distribution is not affected by the injection timing except 90 ATDC.

  • PDF

The analysis of driving mechanism of rods in bent-axis-type axial piston pump (사축식 Axial Piston Pump의 Rod 구동 메카니즘 해석)

  • 김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.76-85
    • /
    • 1997
  • Recently, bent-axis-type axial piston pumps drived by rod being in extensively used in the world, because of simple design, lightweight, effective cost. So, to guarantee the quality of bent-axis-type axial piston pumps drived by rods, it is necessary to know chracteristics of the forces applied to rods and the driving mechanism of rods. But, as they perform both reciprocating and spinning motions, it is difficult to understand driving mechanism. In this paper, I explained the theoretical driving mechanisms of cylinder block drived by rods through geometric method and the characteristics of the forces applied to them.

  • PDF

A Study on Driving Range of Cylinder Block to Eccentricity Ratio of Disk in Bent axis Type Oil Hydraulic Piston Pump (사축식 유압 피스톤 펌프의 디스크 편심률에 따른 실린더블록 구동영역에 대한 연구)

  • Jung, J.Y.;Baek, I.H.;Cho, I.S.;Song, K.K.;Oh, S.H.;Jeong, Y.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • To improve the performance of the bent axis type axial piston pump driven by the tapered piston, it is necessary to know the driving characteristics and mechanism of the tapered piston and the cylinder block. Since each piston not only rotates on its axis and reciprocates in the cylinder bore, but also revolves around the axis of the driving shaft, it is difficult to analyze the driving mechanism theoretically. The theoretical mechanism far the bent axis type axial piston pump is studied by using the geometrical method. The driving range of the tapered piston is determined by theoretical equations. The results show that the cylinder block is driven by one tapered piston in a limited range and the core parameters such as driving factor of the piston and the ahead delay angle influenced performance of the bent axis type axial piston pump.

  • PDF

Driving Mechanism of Tapered Pistons in Bent-Axis Design Axial Piston Pumps

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.181-186
    • /
    • 2003
  • In order to assure the quality of the bent axis design axial piston pumps driven by tapered pistons, it is necessary to know the characteristics of force applied to tapered pistons and the mechanism for driving the tapered pistons. Since they are able to perform both reciprocating and spinning motions in cylinder block, it is difficult to understand the driving mechanismand-tomeasure the forces applied to tapered pistons experimentally In the present study, the theoretical mechanism for driving the tapered pistons is studied by use of the geometric method. The driving area of the tapered pistons is measured by measuring the strain of a cylinder forced against a tapered piston using an electric strain gauge and a slip ring. The forces applied to tapered pistons is also investigated with the change of discharge pressure and the rotational speed. As a results of this investigation, it is concluded that the cylinder block is driven by one tapered piston in a limited area and the driving area is changed due to space angle of the tapered pistons and the swivel angle of the cylinder block. It is also observed that the force applied to tapered pistons increases as the discharge pressure and the rotational speed increase.

Analysis of the flow field in two-stroke engine cylinder of different intake ports angles (포트각도에 따른 2행정기관 실린더내의 유동장 해석)

  • 홍기배;최영진;유홍선;정인식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.55-66
    • /
    • 1993
  • The characteristics of the flow processes in the cylinder of the two-stroke cycle engines have become the subject of increasing and attention owing to the simplicity and the higher power per unit weight of the two-stroke cycle engine. Among the many factors which influence on the scavenging flow, the port angle is important factor. Hence, four different type models with one inlet-port and two side-ports are studied to show the effect of port angle on the laminar scavenging flow. When the inlet-port axial is relatively larger than the side-port axial angle, it is showed that the fresh charge penetrate into the burned gas and displace it first toward the cylinder head and then toward the exhaust port. When the inlet-port axial angle is much less than the side-port axial angle, the fresh charge through the inlet-port directly move toward the exhaust port. The result showed that the model A may suppress the generation of vortices in the vicinity of inlet and side prots which restrict the sufficient supply of fresh charge and obstruct the perfect displacement of all combustion products.

  • PDF

Flow-induced vibrations of dual-cylinders in axial flow via LES simulations

  • Kangfei Shi;Yu Cao;Zhanying Zheng;Shun Lu;Menglong Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3812-3825
    • /
    • 2024
  • The axial-flow-induced vibration of fuel rods in the nuclear power plant is closely related to nuclear safety. In this article, a numerical study is performed on vibration of two elastic cylinders arranged side-by-side in axial flow. Large eddy simulation is employed to predict the turbulent flow. The numerical method has been verified using the experimental root-mean-square vibration amplitude of a single cylinder. A wide range of inflow velocities u*, incident turbulence intensity Tu and space ratio P/D have been examined, where D and P are the diameter and centre-to-centre distance of the cylinders, respectively. The results show that the vibration amplitudes increase with an increasing u*, comparable to the case of a single cylinder in axial flow. However, the two cylinders could bend outwards during a relatively high u* and low Tu. Although Tu significantly affects the amplitudes of the cylinders, it does not change the vibration frequency and the critical velocity at which buckling instability occurs. As the gap between the two cylinders is sufficiently small, the vibration amplitude enhances significantly due to the pronounced hydrodynamic interaction between the two elastic cylinders and surrounding fluid. The direction of buckling is no longer random but fixed.

Design of the Brake Device Using the Axial Crushing of Truncated Cone Type Cylinder

  • Kim, Ji-Chul;Shim, Woo-Jeon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.387-388
    • /
    • 2002
  • A Brake device for the high-speed impacting object is designed using an axial crushing of thin-walled metal cylinder, Thickness of the cylinder is increased smoothly from the impacting end to the fixed end, resulting in the truncated cone shape. Truncated cone shape ensures that plastic hinges are formed sequentially from impacting end. This increases the reliability of brake device working. Computational and real experiments were performed to verify the effects of conical angle. Results indicate that undesirable sudden rise of crushing load can be prevented by applying appropriate conical angle.

  • PDF